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Multiple SARS-CoV-2 variants have arisen during the first
years of the pandemic, often bearing many new mutations. Sev-
eral explanations have been offered for the surprisingly sudden
emergence of multiple mutations that enhance viral fitness, in-
cluding cryptic transmission, spillover from animal reservoirs,
epistasis between mutations, and chronic infections. Here, we
simulated pathogen evolution combining within-host replica-
tion and between-host transmission. We found that, under cer-
tain conditions, chronic infections can lead to SARS-CoV-2-like
bursts of mutations even without epistasis. Chronic infections
can also increase the global evolutionary rate of a pathogen even
in the absence of clear mutational bursts. Overall, our study
supports chronic infections as a plausible origin for highly mu-
tated SARS-CoV-2 variants. More generally, we also describe
how chronic infections can influence pathogen evolution under
different scenarios.

Introduction
During the SARS-CoV-2 pandemic, multiple variants of con-
cern (VOC) have arisen and spread widely throughout the
human population, driving waves of infections and mortal-
ity1–4. The spread of new VOCs has been facilitated by their
ability to evade adaptive immunity developed by previous in-
fections or vaccines5,6. VOC mutations can also increase
virus transmissibility in other ways, such as by improving
the receptor binding ability of the viral Spike protein or in-
creasing viral load5,6.

A singular and unexpected characteristic of early VOCs
has been their abrupt emergence. New variants such as Al-
pha, Delta, and Omicron appeared bearing many mutations
that had not been previously observed, seemingly making a
large evolutionary leap compared to co-circulating variants.
This phenomenon is surprising given the tight transmission
bottlenecks inferred for SARS-CoV-2 (refs.7,8). During acute
infections, few mutations are produced and even fewer are
expected to be passed on in new infections7,8. In princi-
ple, one would then expect viral evolution to proceed through
the gradual accumulation of advantageous (i.e., transmission-
increasing) mutations.

Multiple hypotheses have been put forward to explain the
sudden appearance of a new, highly transmissible variant
with a large number of novel mutations9. One possibility is
cryptic transmission, where undetected circulation in humans
allows for long-term viral evolution10–12. However, given the

number of novel mutations observed in VOCs, this scenario
would require that variants remain undetected for long peri-
ods of time. Circulation in animal reservoirs, followed by
subsequent spillover to humans, could also explain the sud-
den appearance of VOCs with many mutations13–16. As an
alternative to hidden circulation in unobserved human or an-
imal populations, epistasis (i.e., non-additive effects of mu-
tations on viral transmissibility) has been cited as a possible
factor underlying VOC emergence17–20. If multiple muta-
tions are needed to confer a significant fitness advantage to
the virus, then mutants with a small number of mutations may
not be observed at high frequencies in humans.

Based on clinical data, chronic SARS-CoV-2 infections
have emerged as a plausible source of highly divergent vari-
ants. Typical, acute SARS-CoV-2 infections resolve within
days to weeks. However, in some individuals, chronic infec-
tions can persist for months. Chronically infected individ-
uals often have compromised immune systems that are un-
able to fully clear infections21–24. During chronic infections,
there is sufficient time for SARS-CoV-2 to generate multi-
ple mutations, which can rise in frequency and ultimately
fix in the viral population within that individual. Genomic
analyses have shown that the rate of accumulation of muta-
tions within chronically infected individuals is higher than
the rate of SARS-CoV-2 evolution between individuals25. In
addition, VOC mutations have been observed in chronically-
infected individuals25,26. Accelerated selection of antibody
evasion mutations has also been observed in long-term in-
fections treated with monoclonal antibodies or convalescent
plasma27.

Given the potential importance of chronic infections
in the evolution of SARS-CoV-2, mathematical modelers
have begun exploring its anticipated epidemiological ef-
fects in theory and simulations17,18,28,29. Recent work
has incorporated immunocompromised hosts into suscep-
tible/infected/recovered (SIR) epidemiological models that
also include some component of within-host viral evolu-
tion17,28. Smith and Ashby predicted that large jumps in the
proportion of novel variants should only be observed when
there is a significant amount of epistasis between immune es-
cape mutations and a sufficient proportion of the population
is immunocompromised17. In other words, the role of im-
munocompromised hosts in this model is to allow the virus
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Fig. 1. Global evolutionary model for intra-host and between-host levels of evolution. a, The viral population, begins with a single starting genotype and undergoes
discrete and non-overlapping generations of Wright-Fisher evolution subject to mutation, selection, and genetic drift. b, Example frequency of mutations over time during
intrahost evolution. c, The population of individuals comprises patients with acute infection and patients with chronic infections. Viral diversity is generated during intrahost
evolution. During transmission between acutely infected hosts, most mutations are lost due to tight transmission bottlenecks. Chronic infection can allow for the evolution and
transmission of a highly divergent variant. d, Example phylogeny for between-host transmission, including transmission from one chronically infected individual (long branch
in red). Figures a and c were created in BioRender.com.

to cross epistatic fitness valleys. Additional work has also
considered fitness valley crossing for infections of different
durations, but without modeling effects on transmission29.

In an extensive study, Ghafari et al. considered the effects
of chronic infection on the emergence of highly transmissi-
ble VOCs18. In their model, VOC mutations fix at a constant
rate within chronically infected hosts. They consider mul-
tiple fitness landscapes for transmission between individuals,
including models where VOC mutations make equal, additive
contributions to transmission and “plateau-crossing” models
where individual mutations have small effects until a critical
number are accumulated. They concluded that chronic in-
fection could facilitate the emergence of VOCs, defined as
variants with specific transmission-increasing mutations, es-
pecially with plateau-crossing fitness landscapes.

Here, we develop a generic model of pathogen evolution,
coupling evolution within hosts and transmission between in-
dividuals. The primary goal of our model is to understand
how chronic infections can affect pathogen evolutionary dy-
namics over long times. Using transmission effects of muta-
tions inferred from SARS-CoV-2 data30, we show that bursts
of mutations like those observed during the pandemic can oc-
cur even with a simple, additive fitness landscape. In particu-
lar, we explore how the within-host mutation rate, typical du-
ration of infection, and fraction of infections that are chronic
affect the likelihood of mutational bursts. We find that bursty
evolution is especially likely when the acute infection time is
short compared to the duration of chronic infections. Our re-

sults highlight scenarios in which chronic infections produce
evolutionary dynamics that are qualitatively different from
those that are observed in most simple evolutionary models.

Results

Model of pathogen evolution within and between hosts

The global evolutionary dynamics of pathogens such as
SARS-CoV-2 are a consequence of processes that occur
within and between infected individuals. Evolution within
individuals generates a genetically diverse cloud or “quasis-
pecies” of variants31–33. Differential transmission of variants
between hosts ultimately results in pathogen evolution across
individuals. We include both levels of evolution in our model
(Fig. 1).

To model the emergence and accumulation of mutations
within each host, we use a standard, stochastic Wright-Fisher
model34. We assume that the pathogen population begins
with a single starting genotype – consistent with tight trans-
mission bottlenecks – and evolves in discrete generations
subject to selection, mutation, and genetic drift. In each
replication cycle, neutral and positively selected mutations
are randomly introduced with rates µN and µB , respectively.
These mutation rates represent combinations of the basic
probability per replication cycle that a new mutation is intro-
duced and the probability that that mutation is beneficial or
neutral. We assume that significantly deleterious mutations
are rare enough to be efficiently eliminated by selection, and
do not model them explicitly.
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The distribution of fitness effects of beneficial and neu-
tral mutations was derived from selection coefficients learned
from SARS-CoV-2 temporal genomic data30 (see Supple-
mentary Fig. 1). In our model, the fitness effects of mu-
tations are additive, so that the net increase or decrease in
fitness sa for a virus a with n mutations is

sa =
n∑

i=1
si . (1)

Here, the si are the selection coefficients that quantify the fit-
ness effect of each mutation i. A positive selection coefficient
indicates a beneficial mutation that increases fitness, while a
negative coefficient indicates a deleterious mutation.

We assume that mutations that improve viral replication
within a host also improve transmission between individu-
als. In principle, the effects of mutations on replicative fit-
ness and transmission fitness can be different35. As an exam-
ple, some immune escape mutations generated during HIV-1
infection can be deleterious in other contexts, causing them
to revert when the virus is transmitted to a new host36–40.
However, within-host mutations that produce fitness gains
for replication and increase viral load can contribute to in-
creased transmission, as has been shown for Spike mutations
in SARS-CoV-2 (refs.41–43). Furthermore, VOC mutations
have been observed within individuals, including adaptive
mutations concentrated in the Spike protein’s receptor bind-
ing domain and N-terminal domains25,26. Despite these com-
plications, we have aligned selection pressures within and be-
tween hosts for simplicity. Even in this simple case, complex
evolutionary dynamics can occur.

We model transmission between individual donors and re-
ceptors of infection using a branching process that consid-
ers superspreading. In our model, the number of secondary
infections is drawn from a negative binomial distribution
PNB(k,k/(k + Ri)), with k the dispersion parameter and
Ri = R̄

(
1+ ⟨f⟩i

)
the effective reproductive number asso-

ciated to the donor i. The negative binomial distribution has
been used to model superspreading in past studies of viruses
such as SARS and SARS-CoV-2 (refs.44–48). Here, R̄ and
⟨f⟩i are the average baseline (reference) reproductive num-
ber and average fitness of the virus population from the donor
host, respectively. As soon as infection is transmitted, donors
are removed from the population. New infections are es-
tablished by a single, randomly selected pathogen from the
donor. Thus, most of the variant diversity previously gen-
erated is lost. This mimics the characteristic narrow trans-
mission bottleneck observed in some pathogens, including
SARS-CoV-2 (refs.7,8).

The time between when an individual is first infected and
when the infection is transmitted to a new host, which we
refer to as the generation time, constrains the level of viral
genetic diversity that can accumulate and be transmitted. The
generation time varies based on the nature of the infection.
Most infections are acute and cleared by the immune system
in a short period, parameterized by ta. For SARS-CoV-2,
we assume that two rounds of viral replication occur over

Fig. 2. Genetic diversity after typical generation times of acute and chronic
infections. a, Fraction of variants in the intra-host viral population that acquires
more than α mutations over one week of infection. b, distribution of accumulated
mutations after one month of infection. Higher mutation rates lead to the accumu-
lation of more mutations. We consider the same rate, µ, for beneficial or neutral
mutations.

each of the ta days of infection49. In immunocompromised
hosts, infections can last far longer, with a generation time
tc ≫ ta. A longer generation time allows for more rounds
of viral replication, facilitating the accumulation of genetic
diversity. Each time an infection is transmitted, we take the
probability that the new host develops a chronic infection to
be pc ≪ 1. The probability that a new infection is of short
duration (acute) is then 1−pc.

Simulating pathogen evolution

We simulated multiple realizations of the evolutionary model
over 1000 days. At each simulation time, we recorded the
average number of mutations in transmitted variants (vari-
ants randomly sampled from within-host populations that are
transmitted in new infections) and the number of chronically
infected individuals across individual populations. Genera-
tion times for acute cases were set between 2 and 9 days,
covering the values estimated from known infector-infectee
transmission pair data or household data across different con-
tinents50,51. For chronic cases, where generation times are
less well determined, we sampled them from a log-normal
distribution with mean µL = 150 days and standard devi-
ation σL = 80 days. We maintained a fixed neutral muta-
tion supply rate of µN = 10−4 mutations/cycle, based on the
underlying mutation rate of SARS-CoV-2 (ref.49) times the
fraction of nonsynonymous mutations found neutral in the
selection coefficient estimate from SARS-CoV-2 time series
data30 (Methods). We varied the beneficial mutation supply
rate to explore its effect on pathogen evolutionary dynamics.

Patterns of mutation accumulation

Within infected individuals, mutations accumulate progres-
sively in viral populations over time (Fig. 2). Higher muta-
tion rates naturally lead to a more rapid accumulation of mu-
tations. Longer generation times (i.e., more generations of
within-host evolution) also allow for more genetic diversity
to accumulate within individuals, which can then potentially
be transmitted to new hosts.
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Fig. 3. Evolution of viral variants under different scenarios. a, Dynamic evolution of variants within a population exclusively composed of acute cases. b, Population
consisting of both acute and chronic cases but without mutation burst. c, Population consisting of both acute and chronic cases with one mutation burst at t=800 days. For
all different simulations we consider beneficial and neutral mutation rates µB = 10−3 mutations/cycle and µN = 10−4 mutations/cycle respectively. For b and c, chronic
cases are included in the percentage per transmission event pc = 10−3 and generation times tc are drawn from a log-normal distribution with mean µL = 150 days and
standard deviation σL = 80 days.

Across infected individuals, we found that the evolution
of viral populations fell into roughly three patterns (Fig. 3).
In cases where there are few or no chronic infections, we
observe few viral mutations (Fig. 3a). Single viral lineages
tend to dominate the viral population with little competition
between them.

When a significant number of chronic infections occur, two
distinct outcomes are possible. In one case, the accumulation
of mutations in viral populations accelerates and there is sig-
nificant competition between viral lineages, but the increase
in mutations over time remains roughly linear (Fig. 3b). In
other simulations, we observe sudden “bursts” of mutations
in viral populations, reminiscent of the emergence of SARS-
CoV-2 VOCs (Fig. 3c).

Phase diagram for mutational bursts

To explore the relationship between parameter space and the
emergence of mutational bursts, we generated a “phase di-
agram” of the number of mutational bursts per chronic dis-
ease case as a function of the model parameters (Fig. 4). To
classify bursts versus linear accumulation of mutations, we
first determined the distribution of maximum mutation accu-
mulation rates across individuals in simulations without any
chronic infections (Methods). We then identified bursts as
events in which the rate of mutation accumulation was 3.5
or more standard deviations greater than the average maxi-
mum mutation accumulation rate in the simulations with only
acute infections. We investigated a wide range of parameters,
varying the fraction of chronic infections pc, acute generation
times ta, and rate of beneficial mutations µB (see Methods).
For each choice of parameters, we computed the number of
mutational bursts per chronic disease case over 1000 simula-
tions.

We found several factors that facilitated the emergence of
mutational bursts (Fig. 4). Intuitively, bursts occurred more
frequently when beneficial mutation rates were higher (see
analogous heatmap in Supplementary Fig. 3 for a lower

mutation rate). We also found that bursts occurred more
frequently when the acute generation time ta was shorter.
Longer acute generation times lead to greater similarity in
the viral populations in acute and chronically infected in-
dividuals, homogenizing the accumulation of mutations and
decreasing the likelihood of abrupt increases in mutations.

Interestingly, we found that the likelihood of mutational
bursts depends nonlinearly on the fraction of chronic in-
fections. As the fraction of chronic infections increases,
new adaptive mutations are generated more frequently and
spread throughout the population, making isolated bursts un-
likely. At very high frequencies of chronic infections, sev-
eral pathogen variants with many mutations can be produced
simultaneously. These variants then compete among hosts,
reducing several potential bursts to a single one (see Supple-
mentary Fig. 4).

Effects of chronic infections on evolutionary rate

A recent study found that the evolutionary rate of SARS-
CoV-2 within a chronically infected individual was higher
than the estimated global evolutionary rate of the virus, mea-
sured by the rate of substitutions over time25. This can be at-
tributed, in principle, to the absence of stringent bottlenecks
imposed by transmission events. In our simulations, we ob-
served that mutational bursts can occur due to the spread
of new pathogen variants that evolved for long times within
chronically infected individuals. Do chronic infections affect
the overall evolutionary rate even in the absence of bursts?

To answer this question, we quantified the rate of accu-
mulation of mutations across individuals over time in dif-
ferent scenarios (Fig. 5). Specifically, we measured the
evolutionary rate within chronically infected individuals and
the evolutionary rate between individuals in three different
cases: in simulations with no chronic infections (pc = 0),
with chronic infections (pc > 0) but without any observed
mutational burst, and with chronic infections and at least one
observed burst. Each measurement was averaged over 1000
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Fig. 4. Number of mutational bursts per chronic disease case for beneficial
mutation rate of 10−2 mutations/cycle. The frequency of mutational bursts de-
creases as acute generation times increase because chronic and acute subpopu-
lations exhibit greater similarity, leading to homogenization within individual popu-
lations and reducing the likelihood of abrupt mutational events. The dependence
on the fraction of chronic infections is nonlinear: while moderate levels of chronic
infections lead to more frequent bursts, very high levels cause competition among
multiple pathogen variants, each with numerous mutations, reducing the occurrence
of isolated bursts. Each value represents an average over 1000 simulations.

simulations. Our results align with clinical data. Namely,
the evolutionary rate within a single infected individual was
higher than across the population of infected individuals in
all cases.

As expected, we found that the evolutionary rate between
individuals was highest in populations with chronic infec-
tions and where at least one mutational burst was observed.
However, even in the absence of a burst, the presence of
chronic infections still leads to an increased rate of mutation
accumulation compared to populations with only acute infec-
tions. Thus, chronic infections could still accelerate pathogen
evolution through the generation and transmission of adap-
tive mutations, even without the production of SARS-CoV-2
VOC-like variants.

Discussion
In this work, we modeled pathogen evolution within and be-
tween hosts including different types of infections: acute,
short-term infections and rare chronic ones. The goal of our
study was to understand how chronic infections can influence
pathogen evolution over long times. Even with a simple, ad-
ditive fitness landscape, we found that chronic infections can
lead to SARS-CoV-2-like evolutionary dynamics, as mutants
with multiple novel mutations arise and spread through the
population. Such “bursts” of mutations were especially likely
when acute generation times were short.

We found that the frequency of chronic infections had a
strong and nonlinear effect on the frequency of mutational
bursts. When chronic infections were rare, the number of
observed mutational bursts scaled roughly linearly with the
frequency of chronic infections. However, frequent chronic
infections result in the generation and transmission of more
adaptive mutations. Mutants with different beneficial muta-
tions compete for hosts, making it more difficult for a single,

Fig. 5. Average number of accumulated mutations per infection in simulations
of within-host evolution and between-host evolution with and without chronic
infections. For each observation time, the reported value represents the average
number of mutations within intra-host viral populations of actively infected individu-
als, normalized by the total number of infected individuals at that time. The higher
evolutionary rate is obtained within a chronically infected individual due to the ab-
sence of stringent bottlenecks imposed by transmission events. Between-host evo-
lution with chronic infections, even in the absence of a burst, leads to an increased
rate of mutation accumulation compared to populations with only acute infections.
The simulations were conducted with a beneficial mutation rate of µB = 10−3 mu-
tations/cycle, an acute generation time of ta = 2 days, and a probability of new
chronic infection of pc = 4 × 10−4. Each curve represents an average of over
1000 simulations.

dominant variant to quickly emerge.
Our model employs several simplifying assumptions that

could be revisited in future work. First, we assumed that
the fitness effects of pathogen mutations within and between
hosts were the same. While certain mutations, such as those
that increase viral load, are highly likely to improve both
within-host replication and transmission between individuals,
others may only be advantageous in particular scenarios. The
distribution of fitness effects of mutations is also challeng-
ing to determine. Here, we used data from a recent study of
SARS-CoV-2 evolution to parameterize our model30. While
the fitness effects of mutations in this study have exten-
sive experimental support, they are subject to noise, and
they were determined solely from between-host transmission
rather than within-host replication. We have also assumed
that the fitness effects of mutations are the same across hosts.
Experiments52,53 and computational analyses54 have found
many similarities between the fitness effects of mutations
for genetically similar viruses, but some differences between
hosts would be expected in real scenarios.

The model that we have developed is a type of “metapopu-
lation” model55, considering evolution both within and be-
tween hosts. Past studies have used such models to infer
epidemiological dynamics56 and explain phylogenetic struc-
ture57,58, among other applications59. Our work contributes
to this area by exploring how different types of infections
(i.e., acute versus chronic infection) contribute to pathogen
evolutionary rates.
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Methods

Global evolutionary model
Within-host virus evolution model

The viral population, consisting of N infected cells, begins
with a single starting genotype and undergoes discrete and
non-overlapping Wright-Fisher generations subject to selec-
tion, mutation, and genetic drift. For each replication cycle,
neutral and positive selected mutations are randomly intro-
duced from a binomial distribution with rates {µN ,µB} re-
spectively. Once a mutation is generated for the genotype
a, its selective effect sa is drawn from distributions derived
from experimental data. The genotype’s fitness is then up-
dated as fa = fwt + sa, where fwt represents the fitness
of the wild-type genotype. Selected species in the subse-
quent generation are given by binomial sampling with suc-
cess probability defined by their genotype fitness as pa =
fa/

∑
b fb.

Between-host virus evolution model

In our model, new infections are established by one virion
from the infection donor, and most of the variant diversity
previously generated is lost. This mimics the characteris-
tic narrow transmission bottleneck observed in respiratory
viruses like SARS-CoV-2. The variant passed from the infec-
tion donor to an infected individual is randomly selected from
the intrahost virus population. Subsequently, variants with
higher fitness can persist through the transmission bottleneck
only if there is sufficient intrahost evolution time to elevate
their frequency. However, the most common scenario (with
acute infections) is that variants without strong selective ad-
vantage overcome the transmission bottleneck by chance, a
phenomenon of genetic drift.

Another relevant feature that our model incorporates is su-
perspreading, where a small fraction of infectious hosts are
responsible for most transmissions. For this, the number of
secondary infections caused by an infected individual, at its
generation period, is drawn from a negative binomial distri-
bution PNB(k,k/(k+Ri)), where k is the dispersion param-
eter and Ri = R̄

(
1+ ⟨f⟩i

)
represents the effective reproduc-

tive number associated to the host i. This is dependent on the
average reproductive number (R̄) and the average fitness of
the virus population from the donor host ⟨f⟩i =

∑N
a=1 paf i

a,
where pa is the variant frequency. As soon as the infection
occurs, donors are removed from the population, either due
to death or immunity.

Dynamic simulations
We implemented the global evolutionary model in Julia. For
the intra-host viral population size N = 1000 (ref.60), we ran
multiple independent realizations of the evolutionary model
over 1000 days. The distribution of both neutral and ben-
eficial mutation effects used during within-host replication
cycles was fitted from the distribution of selection coeffi-
cients learned from SARS-CoV-2 temporal genomic data61,
as shown in Supplementary Fig. 1. To model generation
times for chronic cases, we assume a log-normal distribution

with mean µL = 150 days and standard deviation σL = 80
days. We select k = 1.0 as the dispersion parameter in the
negative binomial distribution, which is within the estimated
range for SARS-CoV-262. We choose this moderate value to
reflect that, in our model, transmission heterogeneity is not
solely driven by k, as we consider an effective reproductive
number Ri dependent on viral fitness in the donor, which also
contributes to the non-homogeneous spread of secondary in-
fections.

Burst detection method
To identify bursts of mutations along the trajectories of ac-
cumulated mutations, we follow a step-by-step process. Ini-
tially, we calculate the slope at each time point for M trajec-
tories obtained from simulations involving only acute cases.
Subsequently, we apply a Savitzky–Golay filter63 with a time
window length (w) and polynomial order (p) to smooth the
slope time series for each simulation. We extract the max-
imum values from the smoothed slope time series and use
them to build a Gaussian null distribution (see Supplemen-
tary Fig. 2a).

We use the same smoothing process for the slope time se-
ries of simulations involving chronic disease cases. We then
calculate the z-score for each time point using the mean and
standard deviation obtained from the previously established
null distribution. Mutation bursts are identified as outliers in
this null distribution, defined by instances where the z-score
exceeds 3.5. Given that multiple time points near the jump
meet this criterion, we identify change points in the z-score
time series. These change points delineate the start and end
times of each jump, with the midpoint representing the burst
time. The entire procedure is summarized in Supplementary
Fig. 2b.

Data and code
The data and code used in our analysis can be accessed
from the GitHub repository at https://github.com/
bartonlab/paper-SARS-CoV-2-evolution. This
repository also contains the code used to analyze data and
generate the figures presented in this paper.
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Supplementary Fig. 1. Inferred transmission effects of SARS-CoV-2 muta-
tions. The main plot displays a histogram of selection coefficient values inferred
from SARS-CoV-2 temporal genomic data 61. The top-right inset plot shows the
normal distribution fit for coefficient values considered neutral (−0.02 < ŝ < 0.02);
from this distribution, neutral mutation effects during within-host evolution were sam-
pled. The bottom-right inset plot shows the log-normal distribution fit for values
greater than 0.02, representing significantly beneficial mutations; from this distribu-
tion, beneficial mutation effects during within-host evolution were sampled.
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Supplementary Fig. 2. Detection of mutation bursts. a, Distribution of maxi-
mum slopes of accumulated mutation trajectories without chronic infection for acute
generation time of ta = 4.0 days and mutation rates: µB = 10−3 beneficial mu-
tations per cycle and µN = 10−4 neutral mutations per cycle. b, For a simulation
with chronic infection fraction pc = 10−4, the number of accumulated mutations
averaged over an individual’s population is shown in red. The blue curve indicates
the smoothed slope time series with two peaks, detected by z-score time series
change points and represented by the vertical green dashed lines. For smoothing
using the Savitzky–Golay filter, we use parameters w = 150 and p = 1.
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Supplementary Fig. 3. Number of mutational bursts per chronic disease case
for beneficial mutation rate of 10−3 mutations/cycle. This figure is analogous
to Fig. 4 in the main text, but with a lower beneficial mutation rate.
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Supplementary Fig. 4. Dynamic evolution of the viral population under varying chronic infection probabilities. a, Low number of chronic cases, corresponding to
a probability per transmission event of pc = 4 × 10−4. b Intermediate number of chronic cases, with a probability per transmission event of pc = 3.7 × 10−3. c, High
number of chronic cases, resulting from a probability per transmission event of pc = 7.0 × 10−3. For all simulations, we consider beneficial and neutral mutation rates
µB = 10−4 mutations/cycle and µN = 10−4 mutations/cycle, respectively. Generation times are set at ta = 2 for acute cases, while for chronic cases, they follow a
log-normal distribution with a mean of µL = 150 days and a standard deviation of σL = 80 days.
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