
Methods
Evolutionary model
We assume a WF model consisting of N individuals evolv-
ing under mutation and selection. Each individual is repre-
sented by a sequence of length L. The loci are assumed to
be bi-allelic where the value of each locus is either 0 (wild-
type (WT)) or 1 (mutant), thus resulting in M = 2L pos-
sible haplotypes. For clarity, we use i, j, ... to refer to lo-
cus indices and a,b, ... to refer to haplotype indices. The
index is shown as a subscript when representing only one
of the locus or haplotype indices. However, when both in-
dices need to be shown simultaneously, the locus index is
shown as a subscript while the haplotype index is shown
as a superscript. Let na(t) denote the number of individu-
als in the population that belong to haplotype a at genera-
tion t such that

qM
a=1 na(t) = N . At generation t, denote

z(t) = (z1(t), ...,zM (t)) as the observed haplotype frequen-
cies with za(t) = na(t)

N . The observed allele frequencies are
correspondingly x(t) = (x1(t), ...,xL(t)) and are related to
haplotype frequencies by xi =

q
a ga

i xa where ga
i represents

the allele (either 0 or 1) at the ith locus of the ath gentype.
Here we assume that the fitness contribution from individ-

ual alleles is additive, such that the fitness fa of the ath hap-
lotype can be written

fa = 1+
Lÿ

i=1
sig

a
i . (3)

Here the si denote the time-invariant selection coefficients
for mutant alleles, which quantify the selective advantage of
mutant allele i relative to wild-type (WT). This model is con-
sistent with a multiplicative fitness model where the effects of
individual mutations are small, or an exponential fitness func-
tion for an additive trait, where each mutation is assumed to
make a small contribution to the trait value.

Under Wright-Fisher dynamics, the probability of observ-
ing haplotype frequencies z(t + 1) at generation t + 1, given
haplotype frequencies of z(t) at generation t, is

P (z(t+1)|z(t)) = N !
MŸ

a=1

pa(z(t))Nza(t+1)(n)
(Nza(t+1))! (4)

where pa(z(t)) is the probability of observing haplotype a
at generation t. To derive this expression, we sum over con-
tributions to generating haplotype a in the next generation,
including the effects of mutation, recombination, and selec-
tion,

pa(z(t)) =
za(t)fa +

q
b|b ”=a (µbazb(t)fb ≠µabza(t)fa)

qM
b=1 zb(t)fb

.

(5)
Here µba is the probability for haplotype b to mutate to hap-
lotype a in a generation.

We assume that mutations at different loci are independent
with the same mutation rate µ, so that µba = µd(b,a)(1 ≠

µ)L≠d(b,a) where d(b,a) is the number of different alleles
(Hamming distance) between haplotype b and haplotype a.

Below, we will follow the assumption that the population
size N is large, and that the selection coefficients si, muta-
tion rate µ, and recombination rate r are small (O(1/N)).
For now, expanding the expression for pa(z(t)) to eliminate
terms of order µ2 and higher, we have

pa(z(t)) =
za(t)fa +µ

q
b|d(b,a)=1(zb(t)fb ≠za(t)fa)
qM

b=1 zb(t)fb
(6)

The probability that the haplotype frequency vector follows a
particular evolutionary path (z(t1),z(t2), . . . ,z(tK)), condi-
tioned on the initial state z(t0), population size N , mutations
rate µ and selection coefficients s is

P
1

(z(tk))K
k=1 |z(t0),N,µ,s

2
=

K≠1Ÿ

k=0
P (z(t+1)|z(t))

(7)

Weighting observed products of allele frequency
changes
For finitely sampled data, variations in allele frequencies near
the extremes (0 and 1) are more susceptible to sampling
noise. To reduce the influence of noise, we weight the en-
tries of �x�x according to the smaller of the two allele
frequency variances at each time. Specifically, the weight
matrix is

Wij(tk) = min(vi(tk),vj(tk)) ,

where vi(tk) is the variance of interpolated frequency of al-
lele i in the middle of time point tk and tk+1,

vi(tk) = xi(tk)+xi(tk+1)
2

3
1≠

xi(tk)+xi(tk+1)
2

4
.

We denote the sum of the weighted �x�x matrix over an
entire evolutionary history as D,which has entries

Dij =
K≠1ÿ

k=1

1
�tk

�x�xij(tk)Wij(tk)

where �tk is the number of generations between sampling
time points tk and tk+1, i.e., �tk = tk+1 ≠ tk. The factor
of 1/�tk arises from linearly interpolating allele frequency
trajectories, and summing �x�x entries from generation
to generation. To prevent confusion, here we note that the
D matrix defined above is different from the LD matrix38,
which is also commonly written as D.

Forming initial clades
To determine which clade an allele i should belong to, we first
determine the group that has the largest cooperation score
with it, which we denote gmax

i ,

gmax
i = argmax

g
flcoop(i,g) .

10



We quantify the degree to which allele i should be assigned
to group gmax

i by a confidence score, flconf(i), computed as
its cooperation score with group gmax

i minus the sum of its
cooperation scores with all other groups,

flconf(i) = flcoop(i,gmax
i ) ≠

ÿ

g ”=gmax
i

flcoop(i,g) .

With the above concepts, we form the initial clades by first
identifying the pair of alleles with most competing behavior,
i.e., the ones with the most negative entry in D, and assign
them as two initial groups. We then select the next allele
i out of the remaining ones that has the highest confidence
score, flconf(i). The selected allele i is processed in one of
the following ways.

1. We assign it to group gmax
i if it cooperates with group

gmax
i and competes with all other groups. That is,

flcoop(i,gmax
i ) > 0, and flcoop(i,g) Æ 0 for all other

groups.

2. We mark it as a shared allele if it cooperates with more
than one group, such that there are multiple groups
with flcoop(i,g) > 0.

3. We assign it to a new group if it competes with all ex-
isting groups, with flcoop(i,g) Æ 0.

We repeat this procedure of selecting and processing alle-
les iteratively until all alleles have been processed.

Denoting the number of groups as n, we put the group of
shared alleles as the first group (group 1), and sort the other
groups (groups 2 to n) by their sizes from largest to smallest.
Considering possible redundant groups in the end with neg-
ligible signals, we select groups 2 to m so that their entries
in the D matrix are just enough to account for more than a
percentage (set to 99%) of all non-shared alleles in terms of
the sum of absolute values, i.e., we select the smallest m such
that q

i ”=jœ{group2,...,m} |Dij |
q

i ”=jœ{group2,...,n} |Dij |
Ø 99% .

Each of groups 2 to m then constitutes an initial clade.

Iterative refinement of clade membership and frequen-
cies
Below, we first introduce the concept of a “competition pe-
riod,” a time during which a specific set of clones compete,
which is needed to account for cases with time-varying clonal
structures. For each competition period, we obtain an ini-
tial estimate of clade frequencies from their constitutive al-
lele frequencies. We then iteratively refine clonal identities
and clade frequencies until convergence: We detect improba-
ble classifications of alleles and re-classify them to appropri-
ate clades, with clade frequencies re-estimated correspond-
ingly, until no more improbable cases are detected. Finally,
we merge our estimates for clade identities and frequencies
from all competition periods.

Dividing evolution into competition periods

During the course of evolution, a population can exhibit dif-
ferent patterns of clonal interference at different times. For
example, consider a population that consists of multiple,
competing clades until one of the clades outcompetes the oth-
ers and fixes. At a later time, new beneficial mutations can
arise and compete with one another, initiating another period
of clonal interference. To account for these possibilities, we
define a “competition period” as a period of time bounded by
the beginning and end of the coexistence of several clades.
When an evolutionary history consists of multiple competi-
tion periods, each period can have a distinct clonal structure,
i.e., number of clades, clade frequency trajectories, and as-
signment of alleles to different clades. It is thus important
to detect and separate these competition periods to infer this
information correctly.

We detect the existence of multiple competition periods
and set approximate boundaries for them by identifying fixa-
tion events of mutations involved in clonal interference. For
each clade (excluding the shared alleles) generated in the
clustering step, we identify its member alleles that fix during
the evolution. An allele i is identified as fixed at time point
tk if its mean frequency after tk exceeds a threshold value,
set here to 0.98. We take the fixation time of the allele with
the largest confidence score, flconf(i), as the fixation time of
that clade. The fixation of a clade then marks the boundary
between two successive competition periods. When there are
n groups that fix during the evolution, we divide the whole
evolutionary history into n + 1 competition periods at their
fixation times, and infer the clonal structure for each compe-
tition period separately.

The initial clades determined in the previous section are
formed by analyzing the matrix D integrated over the entire
evolution. During a competition period, some of these clades
may have become extinct or may be yet to emerge. The pop-
ulation can therefore exhibit different patterns of clonal inter-
ference in different competition periods. To infer the clonal
structure for each competition period, we form initial clades
again for each competition period separately. The steps to
form initial clades for a competition period are the same as
introduced in the previous section, except that the matrix D
is integrated over that period alone. By limiting the integra-
tion of matrix D to each period, mutations that fixed before a
period or have yet to appear will not interfere with the clas-
sification of mutations that are at intermediate frequencies
within that period. This reduces noise in the integrated D
matrix and could make clustering more accurate.

Estimating clade frequencies

To estimate the frequencies of these clades, we select alle-
les that can provide reliable information on clade frequen-
cies. We filter out alleles that are shared by multiple groups
in the clustering process, alleles that fix during the compe-
tition period, and alleles that get extinct during the evolu-
tion. An allele i is identified as extinct at time point tk if
its mean frequency after tk is lower than a threshold value
(set to 1%). These alleles are excluded from the next step
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because they provide less reliable information to distinguish
between clades. The remaining alleles are then used to obtain
an initial estimate of clade frequencies.

At time point tk, an allele in clade c can be in one of three
states: fixed within its clade, at an intermediate frequency,
or yet to emerge. With sampling noise, frequencies of al-
leles that are fixed within clade c are distributed around the
true underlying clade frequency trajectory, fc(tk). Frequen-
cies of alleles that have not emerged are near zero. We as-
sume that the typical time required for alleles to fix within
a clade is shorter than the time for entire clades to fix in
the population. Therefore, at most time points, most alle-
les have either already fixed within clades or have not yet
emerged. Equivalently, if we view frequencies of all alle-
les in clade c as sampled from a distribution, then its prob-
ability density should have two peaks at zero and fc(tk)
at most time points. Based on this assumption, we esti-
mate the frequency of clade c at time point tk by frequen-
cies of all its member alleles that exceed a threshold (0.01),
S = {xi(tk) | allele i œ clade c, xi(tk) > 0.01}, in three
steps.

1. We consider only frequencies larger than a minimum
threshold (0.01). When there are no such frequencies,
the clade frequency is set as the mean of all its member
frequencies.

2. We estimate the probability density of frequencies
in set S using a kernel density estimation (KDE)
method39. When set S contains too few frequencies to
yield a reliable estimate (fewer than four frequencies),
we resort to setting the clade frequency as the mean of
all frequencies in set S.

3. We identify the frequency with the highest estimated
probability density, select frequencies that fall within a
window of width 0.2 around that frequency, and take
their mean frequencies as an initial estimate of the
clade frequency fc(tk).

Refining clonal identities and clade frequencies
The initial estimates of clonal identities and clade frequen-
cies are based on the clustering results, which are based, in
turn, on the evaluation of co-varying behaviors quantified by
flcoop. Here we refine these estimates by accounting for sam-
pling probabilities. Without sampling noise, the frequency of
an allele should not exceed its clade frequency fc. However,
this becomes possible with noise from finite sampling. In
cases where an allele i has a higher frequency than its clade at
a time point tk, xi(tk) > fc(tk), we assume that its true fre-
quency is the clade frequency fc(tk), and quantify the sam-
pling probability by a binomial distribution, i.e.,

P (xi(tk)|Ri(tk),fc(tk)) =
3

Ri(tk)xi(tk)
Ri(tk)

4

fc(tk)Ri(tk)xi(tk)(1≠fc(tk))Ri(tk)(1≠xi(tk))

where Ri(tk) is the read depth of the data at allele i at time
point tk, and fc(tk) is the estimated frequency of clade c at

time point tk. Note that these probabilities are only consid-
ered for alleles that have a higher frequency than their clades
at some time point.

We refine estimates of clonal identities and clade frequen-
cies in a recursive way. In each round of refinement, for every
allele with a frequency higher than its current clade, we com-
pute the logarithm of its mean sampling probabilities with
respect to all clades over the competition period, i.e.,

log P̄ (i,c) = 1
T

ÿ

tk

logP (xi(tk)|Ri(tk),fc(tk)) (8)

where T is the number of time points in the current compe-
tition period. The clade it most probably belong to based on
sampling probabilities is then denoted as

cmax
i = argmax

c
log P̄ (i,c) .

We then reclassify it to the clade cmax
i when the probability

gain by doing this is larger than a threshold ÷, i.e,

log P̄ (i,cmax
i )≠ log P̄ (i,ccurrent

i ) > ÷ . (9)

After each round of refinement, we re-estimate time-series
frequencies for all clades according to refined clonal identi-
ties following the steps outlined in the previous section. We
then start another round of refinement, unless there is no re-
classification performed in the last round.

Incorporating initially excluded alleles
During the previous steps of estimating clade frequencies and
refining clades and frequency estimates, we exclude alleles
that provide less reliable information to distinguish between
clades. These are alleles that are shared by multiple groups
in the clustering process, alleles that fix during the competi-
tion period, and alleles that never reach a minimum frequency
threshold throughout the competition period. After we have
refined clades and their frequency estimates, we reconsider
these excluded alleles by evaluating their cooperation scores
and sampling probabilities with all clades. The cooperation
score between an allele i and clade c is defined as

fl(i,c) =
ÿ

k

1
�tk

�xi(tk)�fc(tk)w(i,c) , (10)

where �fc(tk) = fc(tk+1) ≠ fc(tk), and w(i,c) =
min(xi(tk)(1≠xi(tk)), fc(tk)(1≠ fc(tk))).

Similar to entries in the matrix D, which quantify corre-
lated frequency changes for different alleles, the cooperation
score fl(i,c) quantifies correlated frequency changes of al-
lele i and clade c. We denote cmaxCoop

i as the clade with
highest cooperation score with allele i, and cmaxProb

i as the
clade with highest mean sampling probability with allele i,
i.e., cmaxProb

i = argmax
c

log P̄ (i,c). We assign allele i to

clade cmaxCoop
i when the two following conditions are met.

1. fl(i,cmaxCoop
i ) > fl̃(cmaxCoop

i ), where fl̃(cmaxCoop
i )

represents the median cooperation score with clade
cmaxCoop

i for all its member alleles.
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2. log P̄ (i,cmaxProb
i ) ≠ log P̄ (i,cmaxCoop

i ) <= ÷, where
÷ is a preset threshold, and log P̄ terms are averaging
logarithm of sampling probabilities over time points at
which frequency of allele i exceeds frequency of clade
c.

Otherwise, we keep allele i as a non-clonal allele which is
shared across clades. The first condition ensures that allele i
exhibits co-varying behaviors to a greater extent than at least
half of member alleles of clade cmaxCoop

i . The second condi-
tion prevents an assignment that is too improbable based on
sampling probabilities.

Merging results from all competition periods

After recovering the clonal structure for each competition pe-
riod, we merge results from all periods by aggregating clonal
identities and connecting clade frequencies. For two succes-
sive competition periods p and p + 1, one of the clades in
period p dominates the population at some time, becomes
the “ancestor” clade in period p + 1, and develops into sub-
clades. We denote this clade as ca, and its fixation time as tf .
When the first sub-clade of ca emerges after tf , the clonal
dynamics of periods p and p + 1 are well separated in time,
and their clonal structures can be directly merged, e.g., as
shown in Supplementary Fig. S1A. However, when the first
sub-clade of ca emerges before tf , say at te < tf , there is an
overlap period [te, tf ] when ca has not fixed and a sub-clade
has started to emerge. In such a scenario, the frequency tra-
jectory of this sub-clade during this overlap is not estimated
in period p + 1, since we divide these two competition peri-
ods at the fixation time tf . It may not be identified in period
p, as the signal of it in the D matrix integrated in that pe-
riod can be weak. In order to estimate this segment of clade
frequency trajectory, we make use of an alternative way to
define competition periods. Instead of dividing at fixation
times of clades, we set boundaries for competition periods
as time points when the clade that is going to fix (i.e., the
ancestor clade of the next competition period) first breeds a
sub-clade. Such boundaries can be determined because we
have already inferred clonal structure for these competition
periods. With re-defined boundaries, we recover again the
clonal structure for each competition period. With results
from both rounds, we can now connect clade frequencies
seamlessly across competition periods. A schematic exam-
ple of this workflow is shown in Supplementary Fig. S1B.

Marginal path likelihood (MPL) inference

Sohail et al. presented a diffusion approximation and path in-
tegral expression for the stochastic haplotype frequency dy-
namics under the WF model setting40. The path integral ex-
pression for the probability of observing a trajectory of hap-

lotype frequencies (z(t1),z(t2), . . . ,z(tK)) is given by

P
1

(z(tk))K
k=1 |z(t0),N,µ,s

2

=
K≠1Ÿ

k=0
P (z(t+1)|z(t))

¥

A
K≠1Ÿ

k=0

C
1

detC(z(tk))

3
N

2fi�tk

4M/2
dz(tk+1)

DB

◊ exp
3

≠
N

2 S
1

(z(tk))K
k=0

24
(11)

where C(z(tk)) is the haplotype covariance matrix, i.e.,

(C(z(t)))ab :=
I

za(t)(1≠za(t)) a = b

≠za(t)zb(t) a ”= b
. (12)

and

S
1

(z(tk))K
k=0

2

=
K≠1ÿ

k=0

1
�tk

Mÿ

a=1

Mÿ

b=1
[za(tk+1)≠za(tk)≠�tkda(z(tk))]

◊
!
C≠1(z(tk))

"
ab

[zb(tk+1)≠zb(tk)≠�tkdb(z(tk))]

where da(z(tk)) is the expected change in haplotype fre-
quency za at time tk.

The MAP estimate of the selection coefficients can be ob-
tained by solving

ŝ = argmax
s

L

1
s|N,µ,(z(tk))K

k=1

2
P prior(s) (13)

where P prior(s) is an assumed prior

P prior(s) = 1
(2fi‡2)R/2 exp

3
≠

1
2‡2 sT s

4
(14)

with mean zero and variance ‡2 > 0, and the likelihood func-
tion is given as

L

1
s|N,µ,(z(tk))K

k=1

2
= P

1
(z(tk))K

k=1 |z(t0),N,µ,s
2

(15)
The right-hand side is approximated by Equation Eq. (11).
Differentiating the expression with respect to s and equating
to zero leads to the MAP estimator of selection coefficients s

ŝ =
C

K≠1ÿ

k=0
�tkC (x(tk))+“I

D≠1

◊

C
x(tk)≠x(t0)+µ

K≠1ÿ

k=0
�tk (2x(tk)≠1)

D

where “ = 1/N‡2.

13



Simulation
To benchmark the performance of our method, we generate
artificial time series sequence data by simulating evolution as
a Wright-Fisher process. As in the previous section, the loci
are assumed to be bi-allelic. In the default setup, in each of
the 40 simulations that we ran, a population of N = 1000 se-
quences started with all wild-type sequences and evolved for
T = 1000 generations. At a generation t, the population first
goes through a multinomial sampling process to determine
the number of sequences za(t) for each existing haplotype
a in the current generation, where the probability pa for a
haplotype a to be drawn is proportional to the product of its
frequency in the last generation za(t≠1) and fitness fa, i.e.,

pa(z(t)) = za(t≠1)faqM
b=1 zb(t≠1)fb

(16)

Each sequence, at each generation, has a fixed probability
(2 ◊ 10≠4) to acquire a new mutation. We assume that at
most one mutation occurs in a given sequence. We enforce
an additional condition that promotes the occurrence and per-
sistence of clonal interference: Each mutation occurs on a
unique site, which also means that each mutation can only be
acquired once. The selection coefficient of each mutation is
drawn from a Gaussian distribution centered at 0.03 with a
standard deviation of 0.01. At the end of the simulation, only
alleles whose frequencies once exceed a threshold of 0.05 are
preserved and considered in later analysis.

We varied the default simulation setup to test our method
more thoroughly. We considered simulations with smaller
(N = 100) or larger (N = 10000) population sizes, simu-
lations with rare recombination events, simulations starting
from a mixture of random haplotypes, and simulations of
diploid populations with random mating. In the diploid pop-
ulation, characterized by having two sets of chromosomes,
we correspondingly adjusted the mutation rate to be twice as
large (4◊10≠4).

Supplementary results
Comparing runtime of methods on LTEE data
We applied the Lolipop and Evoracle methods on the LTEE
data and compared their run times with our method in Sup-
plementary Fig. S10. The LTEE data consists of 12 popula-
tions. Six populations are nonmutator populations with fewer
than 1,000 alleles, while the other six are mutator populations
with more than 1,000 alleles. When applied on the mutator
populations, Lolipop and Evoracle did not finish running af-
ter 2 weeks (after which time running jobs were killed), while
our method requires less than 1 day to complete. Supple-
mentary Fig. S10 shows that the run time of our method is
typically around an order of magnitude faster than Lolipop
and around two orders of magnitude faster than Evoracle for
these large data sets.

Clustering results for population p3 of LTEE data
Population p3 involves more than 6,000 mutant alleles and
is one of the six mutator populations in the LTEE data. We
found that the dynamics of this population is better explained

when we split the whole evolution into two competition pe-
riods at generation 35,000, infer for each period, and com-
bine the inferred dynamics of two periods. We plot the con-
jugate clustering results in Supplementary Fig. S8A. Infer-
ence on each period identifies strong competition between
two clades, where the first period features competition be-
tween clade 1 and clade 2, and the second period features
competition between clade 3 and clade 4. When looking at
their relationships, we found that there are 21 mutant alleles
that are shared between either clade in period 1 and either
clade in period 2. Their frequency trajectories (plotted in yel-
low in Supplementary Fig. S8A) follow either clade 1 or
clade 2 in the first period, and then follow either clade 3 or
clade 4 in the second period. This suggests complex evolu-
tionary dynamics in which the same mutations appear or arise
on different backgrounds.

Data and code
Data and code used in our analysis is available in
the GitHub repository at https://github.com/bartonlab/paper-
clonal-dynamics. This repository also contains Jupyter note-
books that can be run to reproduce these results.
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Supplementary Fig. S1. Merging results from two successive competition periods. A, When subclades in the latter period emerge after the dominant clade in the
former period gets fixed, two periods are well separated in time, and can be merged directly. B, When subclades in the latter period emerge before the dominant clade in
the former period gets fixed, two periods have an overlap. The frequency trajectories of emerging subclades are not complete (upper left plot in B). In order to estimate
frequency trajectories of emerging subclades in the latter period, we perform another alternative split, where we split the whole period at the emergence time of the first
emerging subclade. Upon identifying clade members and estimating clade frequencies for the four periods, we combine results from all four periods to form a complete
reconstruction. The allele frequency trajectories plotted in the figure are from one case of simulated data, where a population of 1,000 sequences were simulated to evolve
for 1,000 generations.
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Supplementary Fig. S2. Effects of different sampling temporal intervals. Performance of five methods averaged over 40 simulations with different sampling temporal
intervals for inference of (A) integrated allele frequency covariance, (B) selection coefficients, and (C) haplotype fitness. The left column shows rank correlations with true
values, and the right column shows the mean absolute error (MAE) of inferred values versus true values. The True method uses the true allele frequency covariance matrix,
which is not available in short read data, and represents the ideal performance.
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Supplementary Fig. S3. Benchmarking on simulated data with a population size of 100. Performance of five methods for inference of (A) integrated allele frequency
covariance, (B) selection coefficients, and (C) haplotype fitness. The left column shows rank correlations with true values, and the right column shows the mean absolute
error (MAE) of inferred values versus true values. The True method uses the true allele frequency covariance matrix, which is not available in short read data, and represents
the ideal performance.
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Supplementary Fig. S4. Benchmarking on simulated data with a population size of 10000. Performance of five methods for inference of (A) integrated allele frequency
covariance, (B) selection coefficients, and (C) haplotype fitness. The left column shows rank correlations with true values, and the right column shows the mean absolute
error (MAE) of inferred values versus true values. The True method uses the true allele frequency covariance matrix, which is not available in short read data, and represents
the ideal performance.
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Supplementary Fig. S5. Benchmarking on simulated data with rare recombination. Performance of five methods for inference of (A) integrated allele frequency
covariance, (B) selection coefficients, and (C) haplotype fitness. The left column shows rank correlations with true values, and the right column shows the mean absolute
error (MAE) of inferred values versus true values. The True method uses the true allele frequency covariance matrix, which is not available in short read data, and represents
the ideal performance.
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Supplementary Fig. S6. Benchmarking on simulated data for a diploid population with random mating. Performance of five methods for inference of (A) integrated
allele frequency covariance, (B) selection coefficients, and (C) haplotype fitness. The left column shows rank correlations with true values, and the right column shows the
mean absolute error (MAE) of inferred values versus true values. The True method uses the true allele frequency covariance matrix, which is not available in short read data,
and represents the ideal performance.
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Supplementary Fig. S7. Benchmarking on simulated data starting from a random mixture of haplotypes. Performance of five methods for inference of (A) integrated
allele frequency covariance, (B) selection coefficients, and (C) haplotype fitness. The left column shows rank correlations with true values, and the right column shows the
mean absolute error (MAE) of inferred values versus true values. The True method uses the true allele frequency covariance matrix, which is not available in short read data,
and represents the ideal performance.
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Supplementary Fig. S8. Clonal structure for population p3 of LTEE data inferred when split into two periods at generation 35,000 exhibits four-clade competition
and complex dynamics. The clustering results from (A) our method (inferred as two periods) and (B) previous results 41 on the population p3 identify different patterns of
clonal interference. Clades 1 and 2 are identified by inference on the first period from generation 0 to 35,000. Clades 3 and 4 are identified by inference on the second period
from generation 35,000 to the last generation. For better visibility, we place trajectories of mutant alleles that are shared across clades (marked as yellow; totaling 21 alleles)
at the front layer. C, D matrix segmented into groups according to clustering processes of the two periods.
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Supplementary Fig. S9. Clonal structure and fitness inference for Planktonic-2 replicate of tobramycin data. (A) Mutant allele frequency trajectories, and (B) clade
frequency trajectories inferred by our method are plotted. C, Our method outperforms the Lolipop and LB methods, and has the same performance as Evoracle, in terms of
rank correlation between inferred fitness and measured MIC values. D, Recovered integrated covariance matrix segmented into blocks according to clustering results of our
method. The number of alleles in each clade is shown in brackets. Alleles in the same clades tend to show cooperating behaviors, as indicated by positive entries. Clades
tend to show competing behaviors with each other, as indicated by negative entries.
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Supplementary Fig. S10. Our method requires significantly less run time on data with a large number of alleles. For mutator populations with more than 1,000 alleles,
Lolipop and Evoracle require run times of more than 2 weeks (336 hours), while our method takes less than 1 day to complete. Overall, the run time of our method is 1 to 2
orders of magnitude less than that of Lolipop or Evoracle. A linear regression on the 12 data points for our method shows that the run time is approximately proportional to
x1.62, where x denotes the number of alleles.
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