
Methods

Evolutionary model
We model rounds of selection in deep mutational scanning
experiments like rounds of reproduction in an evolving pop-
ulation. For this purpose, we use the Wright-Fisher (WF)
model1, a simple model from population genetics where in-
dividuals in a population undergo discrete rounds of muta-
tion, selection, and reproduction. We define the WF model
as follows. We assume that the population consists of N
individuals, each of which possesses a genetic sequence of
length L. Each site in the genetic sequence can take on one
of q possible states, resulting in M = qL possible genotypes.

In the context of DMS experiments, we are typically inter-
ested in the properties of proteins with different amino acid
variants at each site, and thus we use q = 21 for data analyses
(representing 20 amino acids and a stop, which could also be
further extended to account for gaps). However, the frame-
work that we consider is more general. One could consider
nucleotide sequences with q = 4 states (A, C, T, G), q = 64
codons, and so forth.

At each time t, the state of the population is defined by a
genotype frequency vector z(t) = (z1(t),z2(t), . . . ,zM (t)),
where za(t) = na(t)/N , with na(t) representing the num-
ber of individuals that have genotype a at time t. Under the
WF model, the probability of observing genotype frequencies
z(t+1) in the next generation is binomial,

P (z(t+1) | z(t)) = N !
M∏

a=1

pa(z(t))Nza(t+1)

(Nza(t+1))! , (1)

with

pa(z(t)) =
za(t)fa +

∑
b ̸=a (µbazb(t)−µabza(t))∑M

b=1 zb(t)fb

. (2)

Here fa is the fitness of genotype a, defined in detail below,
and µab is the probability of mutation from genotype a to
genotype b in one generation. In typical experiments, muta-
tion rates are low enough that we assume µab is zero across
all pairs of genotypes a, b.

We assume that the fitness of each genotype depends lin-
early on the amino acid (or nucleotide, codon, etc.) content
of the sequence,

fa = 1+
∑

i

sig
a
i . (3)

In Eq. (3), the si are selection coefficients for each variant i,
which quantify the effect of that variant on fitness. If si is
positive, then the variant is beneficial, and if si is negative,
then the variant is deleterious. Here ga

i is an indicator vari-
able, which is equal to one if genotype a possesses the vari-
ant i, and zero otherwise. The variant indicator i is a generic
index that runs across all possible amino acids or states at
each site in the sequence. For example, let us define a geno-
type sequence a = (T,E,K). For this sequence, ga

(1,T ) = 1,
ga

(2,E) = 1, ga
(3,K) = 1, and all other ga

i = 0.

Following Eq. (1), the probability of a sequence of K
genotype frequency (z(tk))K

k=1 = (z(t1),z(t2), . . . ,z(tK)),
conditioned on an initial distribution of genotype frequen-
cies z(t0), is given by the product of the individual transition
probabilities,

P ((z(tk))K
k=0) =

K−1∏
k=0

P (z(tk+1) | z(tk))P (z(t0)) . (4)

Inferring fitness effects of mutations with popDMS
We view sequencing results in a DMS experiment as mea-
surements of the genotype frequency vectors z(t). To infer
the functional effects of mutations, we apply Bayes’ theorem,
seeking the selection coefficients s that maximize the poste-
rior probability of the entire evolutionary trajectory Eq. (4).
This includes a Gaussian prior distribution for the selection
coefficients

Pprior (si) ∝ e−γs2
i /2 . (5)

Here γ encodes of the width of the prior distribution, which
can also be thought of as L2-norm regularization of the selec-
tion coefficients. Since we optimize γ based on the data, our
inference framework is not Bayesian in the strict sense, but
it is effectively maximum likelihood inference with ridge re-
gression. This prior will act to shrink the estimates of all mu-
tation effects (including the wild-type) toward zero, so that
large selection coefficients are not inferred without strong ev-
idence.

The overall posterior distribution for the selection coeffi-
cients is then given by

Ppost(s) ∝ L
(

(z(tk))K
k=1

)∏
i

Pprior(si) , (6)

where the likelihood of the data L is given by Eq. (4).
Following recent computational advances2, to simplify the

likelihood, we consider the diffusion limit of the WF model.
In this limit, we assume N is large and the s and µab are
small, i.e., formally of order O(1/N). Then we derive the
Fokker-Plank (FP) equation1,3,4 from the WF process Eq. (4),
which describes the evolution of the probability density of
genotype frequencies,

∂p(z, t)
∂t

=
∑

a

∂

∂za

(∑
b

∂

∂zb

Cab(z)
2N

−da(z)
)

p(z, t) .

(7)
Here (da(z))a is referred to as the drift and (Cab(z))ab is
the diffusion. Note that there are some differences in termi-
nology between population genetics and FP equations. The
“drift” term in the Fokker-Planck equation does not describe
genetic drift in population genetics; instead, genetic drift is
captured by the “diffusion” term.

The drift and diffusion terms arise from the first and second
order cumulants of the binomial process Eq. (1), respectively:∫

dz′(z′
a −za)P (z′ | z) = da(z)+O(1/N2)∫

dz′(z′
a −za)

(
z′

b −zb

)
P (z′ | z) = Cab(z)/N +O(1/N2) .

(8)
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Drift is characterized by selection pressure and mutation ef-
fects. By taking the leading orders in O(1/N), then drift and
diffusion terms can be expressed as:

da(z) = Caa(z)sa +
∑
b ̸=a

Cab(z)sb +µfl
a

µfl
a =

∑
b

(µbazb −µabza)

Cab(z) =
{

za(1−za)/N for a = b

−zazb/N for a ̸= b

(9)

Here, µfl
a is a net flux consisting of incoming probability flux

from all genotypes b to a and outgoing flux from genotype a
to all other genotypes b (due to mutation). We can then con-
vert the FP equation Eq. (7) with drift and diffusion Eq. (9)
into an expression that describes the probabilities of genotype
frequency trajectories,

P (z(tk+1) | z(tk)) ∝ exp(−NS(z(tk+1) | z(tk)))

S(z(tk+1) | z(tk)) = 1
2∆tk

(∆z(tk)−∆tkd(z(tk)))⊤

×C(z(tk))−1(∆z(tk)−∆tkd(z(tk))) .

(10)

Here, we denote ∆z(tk) as frequency change z(tk+1) −
z(tk). The last expression enables us to obtain an analytical
solution for the optimal selection that maximizes the poste-
rior distribution over the evolution Eq. (6).

Finally, the selection coefficients that maximize Eq. (6) are
given by

ŝi =
∑

j

[
K−1∑
k=0

∆tkC(tk)+γI/N

]−1

ij

(
∆xj −µfl

j

)
,

(11)

where ∆tk = tk+1 − tk, ∆xj = xj(tK) − xj(t0), and µfl
j is

the net expected change in the frequency of variant j over
the course of the experiment due to mutation alone. Typi-
cally, µfl is assumed to be zero, except for experiments in-
volving viral replication, where mutation rates can be high
enough to produce observable changes in frequency. Here
C(t) is the covariance matrix of variant frequencies xi(t) =∑M

a=1 ga
i za(t), which has entries

Cij(t) =
{

xi(t)(1−xi(t)) i = j

xij(t)−xi(t)xj(t) i ̸= j .
(12)

Here xij(t) =
∑M

a=1 ga
i ga

j za(t) is the frequency of geno-
types at time t that contain both variants i and j.

The estimate of the selection coefficients ŝi given in
Eq. (11) can be explained intuitively. First, for simplicity,
consider the matrices C(tk) to be diagonal. Then, the esti-
mate for ŝi depends on how much variant i has increased in
frequency over the course of the experiment, after correcting
for changes in frequency that are not due to functional selec-
tion, (∆xi − µfl

i ). This quantity is normalized by the vari-
ance of the variant frequency xi(tk) over time (Eq. (12)). In

the limit that xi(tk) is small (and again, that the off-diagonal
terms are zero), the estimate for ŝi is similar to an enrich-
ment ratio, because in this limit 1 − xi(tk) ≈ 1. However,
this estimate is also shrunk by a factor of γ due to the prior
distribution for the selection coefficients. Importantly, the
variance also becomes small when xi(tk) is close to one, as
is often the case for wild-type (WT) or reference amino acids
in DMS experiments. This distinguishes the treatment of WT
variants in popDMS as compared to ratio-based methods and
regression-based methods that do not assume logistic growth.

Off-diagonal terms in Eq. (11) account for the influence
of genetic background on changes in variant frequency. For
example, a variant i may increase in frequency not because
it has a beneficial functional effect, but rather because it ap-
pears on the same genetic sequence with other beneficial vari-
ants more often than expected by chance (i.e., positively co-
varying with other beneficial variants; see Eq. (12)). In pop-
ulation genetics, this phenomenon is referred to as genetic
hitchhiking5. In DMS data, covariances cannot always be
computed due to limited read lengths, but this information
can be used to enhance predictions when it is available.

To derive Eq. (11), we assumed that the number of indi-
viduals in the population, N , is constant. However, in exper-
iments (and in real populations), N can vary in time. Incor-
porating time-varying population sizes leads to similar esti-
mates of selection, but with a larger uncertainty in the in-
ferred parameters (see ref.6 for a related model). For sim-
plicity, we will maintain the assumption that N is constant.
Additionally, in the discussion below we will absorb the pop-
ulation size N into the definition of γ, so that the strength of
the regularization does not rely on an arbitrary definition of
population size.

Joint estimates of selection coefficients across exper-
imental replicates
We model experimental replicates as alternative evolutionary
histories, subject to the same functional effects of mutations
but with different stochastic realizations of evolution (and po-
tentially different starting conditions). The posterior proba-
bility for the selection coefficients across R replicates is then
given by

Ppost(s) ∝
R∏

r=1
L
(

(zr(tk))Kr
k=1

)∏
i

Pprior(si) . (13)

Here each experimental replicate has a different index r, and
the likelihood across all replicates is the product of the like-
lihood for each individual replicate. Since each L is Gaus-
sian in the selection coefficients, the product is also Gaus-
sian, and the MAP selection coefficients can be computed as
in Eq. (11), yielding

ŝi =
∑

j

[
R∑

r=1

K−1∑
k=0

∆tkCr(tk)+γI/N

]−1

ij

×
R∑

r=1

(
∆xr

j −µr,fl
j

)
.

(14)
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Correction for sequencing errors
For some data sets, information on sequencing error rates is
available. For example, this can be obtained by sequencing
a library consisting of all WT sequences, so that all differ-
ences from WT are likely attributable to sequencing errors.
When this data is available, we compute corrected mutant and
WT counts by subtracting the expected contributions from se-
quencing errors.

Optimizing the regularization strength
For simplicity, we incorporate the WF population size N
into the prior parameter γ to define an effective regulariza-
tion strength γ′ = γ/N . Larger values of γ′ put a higher
penalty on inferred selection coefficients, thereby suppress-
ing their values, but also limiting the effects of sampling
noise. Smaller values of γ′ allow for the inference of larger
selection coefficients, but in turn, these estimates are more
sensitive to noise.

One can choose a single value of γ′ to use for all data
sets, but this parameter can also easily be optimized for an
individual data set. The most computationally intensive step
in inferring mutation effects (i.e., selection coefficients) with
popDMS is computing the variant frequencies and covari-
ances from sequencing data. After this step has been com-
pleted, it is straightforward to sweep through a range of γ′

values and test their results for each data set.
We found that the average correlation of inferred muta-

tion effects between replicates typically behaves like a logis-
tic function of log(γ′). For very small values of γ′, sampling
noise is not effectively suppressed, and the correlation of in-
ferred mutation effects between replicates is lower. As γ′

increases, noise is suppressed, leading to higher correlations
between replicates. At high values of γ′, high correlations
between replicates are typically preserved, but the inferred
selection coefficients are shrunk strongly towards zero.

We reasoned that an optimal choice for the regulariza-
tion strength γ′ would be the smallest value of γ′ that effec-
tively suppresses sampling noise, as this would avoid shrink-
ing estimated selection coefficients unnecessarily. To com-
pute this value, for each experimental data set described be-
low, we swept through values of γ′ in even logarithmically
spaced steps from roughly 1/B, where B is the maximum
read depth, to 1000. For each value of γ′, we computed the
correlation between replicates. We then computed the differ-
ence ∆R = Rmax −Rmin between the maximum correlation
and minimum correlation between replicates across all val-
ues of γ′. To determine the optimum value of γ′, we started
with the value that corresponds to the maximum correlation
between replicates. We then identified the γ′ where R values
drop the most significantly. If R does not decrease more than
a threshold, we used the smallest γ value where R decreases
by 10% of Rmax.

While sweeping through values of γ′ improves our consis-
tency across data sets, allowing us to adjust our regularization
to match the level of noise in the data, we emphasize that this
step is not essential to obtain robust results. A simple choice
of γ′ = 0.1 is nearly optimal for every data set we considered,

with the exception of the influenza PR8 study7. This data set
is the only one in which the correlation between replicates is
not roughly a logistic function of the regularization strength.

Generating logo plots with popDMS
Inferences from DMS data such as amino acid preferences
(derived from enrichment ratios) have often been used to gen-
erate logo plots that show the relative dominance of different
amino acids at each site. However, while preferences natu-
rally sum to one, selection coefficients inferred by popDMS
can be both positive and negative. To obtain preference-like
logo plots using selection coefficients inferred by popDMS,
computed exponentially transformed values

pi = eβsi , (15)

where the scaling factor β was approximately chosen to max-
imize the correlation between the transformed selection coef-
ficients pi and amino acid preferences for the same data set.

Inference of epistasis
We extended our approach to infer pairwise epistatic interac-
tions between variants by adding epistatic interactions sij to
the previous fitness function Eq. (3), i.e.,

fa = 1+
∑

i

sig
a
i +

∑
i

∑
j ̸=i

sijga
i ga

j . (16)

As for the selection coefficients defined above, if an epistatic
interaction sij is positive, then the presence of variants i
and j together increases fitness more than would be expected
from the combined effect of the individual variants. When
sij is negative, variants i and j together are more deleterious
than expected if they were independent.

With this extension of the fitness model, one can then com-
pute the posterior probability for the change in genotype fre-
quencies, as in Eq. (6). We also assume a Gaussian prior
distribution for the epistatic interactions that is centered at
zero and has the same width as for the selection coefficients.
The MAP selection coefficients for the selection coefficients
and epistatic interactions have a form analogous to Eq. (11),
but with an expanded index that runs over all variants i and
all pairs of variants (i, j). Additional terms in the covariance
matrix are then given by

Ci,(i,j)(t) = xij(t)(1−xi(t)) ,

Ci,(j,k)(t) = xijk(t)−xi(t)xij(t) ,

C(i,j),(i,j)(t) = xij(t)(1−xij(t)) ,

C(i,j),(i,k)(t) = xijk(t)−xij(t)xik(t) ,

C(i,j),(k,l)(t) = xijkl(t)−xij(t)xkl(t) ,

(17)

with

xijk(t) =
M∑

a=1
ga

i ga
j ga

kza(t) ,

xijkl(t) =
M∑

a=1
ga

i ga
j ga

kga
l za(t) .

(18)
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popDMS differs from some alternatives to estimating epis-
tasis in that information about pairwise interactions is gained
from all sequences that bear two or more non-reference vari-
ants. For example, one previously developed approach effec-
tively estimated the fitness of sequences with exactly two mu-
tations and compared this with estimates of the fitness for cor-
responding single mutants to estimate the strength of epistatic
interaction between the mutations8.

At present, inferring epistatic interactions from DMS data
with popDMS is only computationally feasible for short se-
quences due to the large size of the covariance matrix. Alter-
native approaches that strictly enforce sparsity and reduce the
number of possible interactions to estimate could potentially
ease these computational restrictions.

Testing performance in simulations
We simulated evolution following the WF model over a num-
ber of generations to test the performance of popDMS. To
reproduce finite sampling statistics similar to those observed
in experimental data, we used the initial genotype frequency
data from an experimental data set9. We ordered the variants
by frequency at each site and inferred a best-fit multinomial
model describing the frequency distribution across sites using
PyStan10. This inferred distribution thus captures a typical
hierarchy of frequencies observed in DMS experiments, from
high frequency (WT/reference) variants to rare ones, whose
counts may be of the same order as the read depth.

In our simulations, selection coefficients for all variants
were chosen at random from a normal distribution with mean
zero and standard deviation 0.1. True starting frequencies
were sampled at random from the inferred multinomial distri-
bution using PyStan. We then simulated up to 10 generations
of evolution following the WF model, here assuming a muta-
tion rate of zero and population size of N = 108. From these
true trajectories, we obtained finitely sampled frequency tra-
jectories by multinomial sampling from the true frequencies
at each generation, with various choices for the sampling
depth. To highlight stochasticity, we used a sampling depth
of B = 5×104 sequences in Supplementary Fig. 1a.

We used this data to compute the average correlation for
selection coefficients inferred from different replicates using
popDMS, which varies depending on the number of genera-
tions of data used (Supplementary Fig. 1b). Intuitively, ob-
serving the evolution for a longer time leads to more precise
estimates.

We compared the results of popDMS against other com-
mon approaches, which we implemented as described below.
To compute enrichment ratios, we compare the fraction of
reads with a particular variant a pre- and post-selection,

Ea =
na

post/Bpost

na
pre/Bpre

. (19)

Here na
pre and na

post are number of reads with variant a be-
fore selection and after selection, respectively. Similarly,
Bpre and Bpost represent the total number of reads before
and after selection. To compute log ratio scores, we used the

natural logarithm of the enrichment ratios,

Elog
a = log

(
na

post/Bpost

na
pre/Bpre

)
. (20)

Finally, log ratio regression scores were computed by calcu-
lating the logarithm of the enrichment ratio Eq. (20) for each
variant at each generation, then extracting the slope of the
linear model the best fits the change in log enrichment ratios
over time.

Effects of strong noise on read counts
We further extended the simulations described above to
model the effects of strong noise in read counts, which can
appear in DMS experiments11,12. We modeled additional
sampling noise for read counts using a negative binomial
distribution PNB(λ,r), a heavy-tailed distribution that has
been used in prior work to model overdispersion in sequence
count distributions. Here, λ and r are the mean (expected)
read counts and the dispersion parameter, respectively. We
used dispersion parameters derived from the analysis of ex-
perimental data: λa = Bna/N and r = r(λ) = βλα with
α = 0.69 and β = 0.8 (ref.13). In the expression for λa, B is
the sample size (i.e., the total number of reads) and N is the
total population size. Subsequently, we obtained an ensem-
ble of read counts sampled from the WF model simulations
with the fitness function described above.

We then compared the inferred selection coefficients with
the true ones (Supplementary Fig. 2), using the same pro-
cedure as for experimental data sets. We found that the
correlation obtained by popDMS (Pearson’s R = 0.94) ex-
ceeded ones using log-preferences, log-ratio regression, or
log-enrichment ratios (Pearson’s R = 0.65, R = 0.53, and
R = 0.53, respectively; Supplementary Fig. 2). For the reg-
ularization strength, we used the same procedures as for ex-
perimental data. We used three replicates for all inference
methods.

DMS data sets
Data sets used in this paper were obtained from 17 publica-
tions7–9,14–27. Additional information about these data sets,
and the methods used to analyze them, is summarized in Ta-
ble 1.

Comparison with prior studies of epistasis
Here we analyzed a data set from Araya and collaborators,
which explored epistasis in the WW domain of the hYAP65
protein8. There, they define epistasis in a way that dif-
fers from our definition (i.e., the sij in Eq. (16)). For each
genotype variant a, Araya et al. define a parameter Wa =
2(Sa−SWT), where the Sa are best-fit slopes of the logarith-
mic enrichment ratios for variant a. SWT is the slope for the
WT variant, which they use to normalize the results. They
use the quantity ϵab = Wab − WaWb as the primary metric
of epistasis. Here, a and b represent genotypes with a single
mutation, and ab the genotype that features only these two
mutations.
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When the frequency of a variant is small, the Sa computed
by Araya et al. are similar to our fa. Thus, to compare the
quantities inferred by Araya et al. to our sij , we computed a
set of transformed scores, which we write as

s̃ij = log2 (Wij)− log2 (Wi) log2 (Wj) . (21)

There is good overall agreement in the epistatic interactions
sij inferred by popDMS and the transformed interactions s̃ij ,
computed from the W values of Araya et al. (Pearson’s R =
0.73, Spearman’s ρ = 0.75). Figure 2a similarly shows broad
agreement between the sum of squared epistatic interactions
between variants at each pair of sites in the WW domain,
though those inferred by popDMS are sparser (Figure 2b).

Comparison with natural frequencies of influenza vari-
ants
In general, it is challenging to validate inferences about the
fitness or functional effects of amino acid variants inferred
from DMS experiments because “ground truth” measure-
ments for these effects do not exist. However, one possible
method of validation is to compare the inferred fitness effects
of variants to the frequency of mutations observed in natu-
ral populations. This approach was explored by Thyagarajan
and collaborators in their study of the effects of mutations in
the influenza hemagglutinin protein21.

We performed a similar analysis to compare our results to
fitness effects inferred using enrichment ratios for the same
data set21. While it is possible to directly correlate variant
frequency and the inferred fitness effect of the variant, this
connection is not entirely natural because frequency should
be determined not just by the fitness effect of a variant, but
also by the relative fitness effects of other possible variants at
the same site.

To make a clearer connection with the data, we reasoned
that, in most cases, the amino acid with the highest frequency
in natural populations should be the variant with the highest
fitness at each site. We thus ranked the fitness effects of each
amino acid variant at the same site, and computed the rank
of the top variant according to both selection coefficients in-
ferred by popDMS and enrichment ratios. For popDMS, the
amino acid most frequently observed in natural populations
had an average rank of 2.1 across sites (median 1), compared
to an average rank of 2.7 (median 1) for enrichment ratios.

To determine the extent to which the amino acid that is
most frequently observed in natural populations is predicted
to be dominant at each site, we also computed a z score for
the most frequent variant at each site. This was computed by
taking the metric of fitness (selection coefficients or enrich-
ment ratios) for the most frequent variant at each site, sub-
tracting the mean value for the same site, and dividing by the
standard deviation of values at that site. We found an average
z score for the most frequent variant of 3.5 using popDMS,
compared to 2.6 for enrichment ratios.

Thus, we find that selection coefficients match well with
the corresponding frequencies of amino acid variants in a nat-
ural population. Results obtained using popDMS also com-
pare favorably with prior results computed using enrichment
ratios21.

Data and code

Raw data and code used in our analysis are available in
the GitHub repository located at https://github.com/
bartonlab/paper-DMS-inference. This repository
also contains Jupyter notebooks that can be run to reproduce
the results presented here. Code for popDMS alone, with-
out the analysis contained in this paper, is also provided in
a separate GitHub repository at https://github.com/
bartonlab/popDMS. popDMS is coded in Python3 and
C++.
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Protein Source Inference method
(software)

Number of
time points

Number of
replicates

Run time
(seconds) Reference

1 Zika Virus Envelope

Virus

Enrichment ratio
(dms_tools2)

2 3 10 Sourisseau et al., 2019 14

2 HIV-1 Envelope - BG505 2 3 13
Haddox et al., 2018 9

3 HIV-1 Envelope - BF520 2 3 12
4 HIV-1 Envelope - BF520 - Human 2 2 8

Roop et al., 2020 15
5 HIV-1 Envelope - BF520 - Rhesus 2 2 8
6 HIV-1 Envelope - BG505 - VRC34 2 2 9

Dingens et al., 2018 167 HIV-1 Envelope - BG505 - FP16 2 2 8
8 HIV-1 Envelope - BG505 - FP20 2 2 8

9
H3N2 Influenza Hemagglutinin

Perth2009 2 4 14 Lee et al., 2018 17

10
H1N1 Influenza Polymerase

Basic 2 - CCL141 2 3 14
Soh et al., 2019 18

11
H1N1 Influenza Polymerase

Basic 2 - A549 2 3 14

12 H1N1 Influenza Matrix Protein M1 2 3 5 Hom et al., 2019 19

13
H3N2 Influenza Nucleoprotein

MxA

Enrichment ratio
(dms_tools)

2 2 6

Ashenberg et al., 2017 20
14

H3N2 Influenza Nucleoprotein
MxAneg 2 2 6

15
H3N2 Influenza Nucleoprotein

MS 2 2 6

16
H1N1 Influenza Nucleoprotein

PR8 2 3 9
Doud et al., 2015 7

17
H3N2 Influenza Nucleoprotein

Aichi68C 2 2 6

18
H1N1 Influenza Hemagglutinin

WSN
Enrichment ratio

(mapmuts) 2 3 11 Thyagarajan et al., 2014 21

19
H3N2 Influenza Neuraminidase

NA Enrichment ratio 2 2 6 Lei et al., 2023 27

20
SARS-CoV-2 Receptor Binding Domain

Spike Global epistasis 2 2 748 Starr et al., 2020 26

21 Ubiquitination factor E4B - Ube4b Mouse
Enrichment ratio

(Enrich)

4 2 266 Starita et al., 2013 22

22 BRCA1 RING Domain - Y2H 1

Human

4 3 2607
Starita et al., 2015 2323 BRCA1 RING Domain - Y2H 2 4 3 2588

24 BRCA1 RING Domain - E3 6 6 8253
25 Myeloproliferative Leukemia Protein Log ratio

regression (Enrich2)
2 6 26

Bridgford et al., 2020 24

26
Myeloproliferative Leukemia Protein

S505N 2 6 25

27 hYAP65 WW domain - WW Log ratio
regression

4 2 31 Araya et al., 2012 8

28 BRCA1 exon 18 - DBR1 4 2 1237 Findlay et al., 2014 25

Supplementary Table 1. Summary of data sets studied in this work.
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Supplementary Fig. 1. popDMS is robust to finite sampling error. a, Due to
finite sampling of the data, variant frequencies can appear to fluctuate over time
even if the underlying behavior is smooth, complicating inference. Results from an
example simulation (Methods). b, As the number of generations used for inference
in simulations increases, all methods become more robust. popDMS is especially
robust in inferring mutation effects from limited data with few rounds of selection.
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a b

c d

Supplementary Fig. 2. Comparison between true and inferred fitness effects
of mutations in simulations including overdispersion of variant counts. a, Se-
lection coefficients inferred via popDMS from simulations compared with the under-
lying true ones (see Methods). Correlations between true and inferred coefficients
are higher for popDMS than for alternatives, including (b) log preferences, (c) log
ratio regression, and (d) log enrichment ratios.
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Supplementary Fig. 3. popDMS achieves robust rank correlations between mutation effects inferred from different experimental replicates. This figure is analogous
to Fig. 1b in the main text, but plotting the Spearman r2 between replicates instead of Pearson correlations.
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a b

Supplementary Fig. 4. Typical example site where popDMS displays more
consistent inferences between replicates. Here we examine preferences (a)
and exponentially transformed selection coefficients (b) at site 48 in the HIV Env
BG505 data set. popDMS values are more consistent across replicates. Unusually
low counts for methionine in the initial library for the first replicate lead to a large
enrichment ratio, which skews estimated mutational effects. The selection coef-
ficient inferred for methionine from the first replicate alone is also enhanced, but
more moderately so due to the influence of regularization and proportionality to the
change in frequency ∆x.
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Supplementary Fig. 5. Comparison of selection at individual sites inferred by
popDMS and enrichment ratios for the HIV-1 Env BG505 data set. a, Expo-
nentially transformed selection coefficients inferred by popDMS (see Methods) are
similar to preferences (normalized enrichment ratios) at sites 287 and 417. At site
287, both methods agree on the dominance of phenylalanine. At site 417, both
methods find broad tolerance for different amino acid variants. b, In contrast, dif-
ferences are observed between popDMS and preferences at sites 592 and 596.
In both cases, popDMS finds the reference amino acid (isoleucine at site 592 and
serine at site 596) to be strongly favored due to its increase in frequency during the
experiment. These frequency changes were small relative to the initial frequency of
the amino acid, but they were large considering the limited capacity for the amino
acid to grow in frequency. This latter factor is captured by popDMS, but is not typi-
cally accounted for in ratio-based approaches.
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