
Clonal heterogeneity and antigenic stimulation
shape persistence of the latent reservoir of HIV

Marco Garcia Noceda1 and John P. Barton1,2,3,†

1Department of Physics and Astronomy, University of California, Riverside, USA. 2Department of Physics and Astronomy, University of Pittsburgh, USA. 3Department of
Computational and Systems Biology, University of Pittsburgh School of Medicine, USA. †Address correspondence to: jpbarton@pitt.edu.

Drug treatment can control HIV-1 replication, but it cannot cure
infection. This is because of a long-lived population of quies-
cent infected cells, known as the latent reservoir (LR), that can
restart active replication even after decades of successful drug
treatment. Many cells in the LR belong to highly expanded
clones, but the processes underlying the clonal structure of the
LR are unclear. Understanding the dynamics of the LR and the
keys to its persistence is critical for developing an HIV-1 cure.
Here we develop a quantitative model of LR dynamics that fits
available patient data over time scales spanning from days to
decades. We show that the interplay between antigenic stimu-
lation and clonal heterogeneity shapes the dynamics of the LR.
In particular, we find that large clones play a central role in
long-term persistence, even though they rarely reactivate. Our
results could inform the development of HIV-1 cure strategies.

Introduction
Human immunodeficiency virus (HIV-1) actively replicates
in CD4+ T cells1,2. During the infection process, the ge-
netic material of the virus is incorporated into the DNA of
the host cell3. Most infections result in the rapid production
of new viruses, leading to the death of these infected cells
within a few days4. However, in a fraction of cells, HIV-1
is capable of lying in a dormant, “latent” state5. This pop-
ulation of long-lived, latently infected cells is referred to as
the latent reservoir (LR) of HIV-1. While antiretroviral ther-
apy suppresses active HIV-1 replication, it is unable to elim-
inate latently infected cells or their integrated proviruses6.
Many latent viruses remain capable of reactivation, resulting
in a quick return to active infection if antiretroviral treatment
(ART) is interrupted, even in individuals who have undergone
effective drug treatment for many years7,8. The LR therefore
presents the major barrier to an HIV-1 cure.

Understanding factors that contribute to LR persistence
could greatly contribute to HIV-1 cure efforts. However, it
is difficult to obtain a comprehensive picture of LR dynam-
ics from direct measurements due to its small size. For typ-
ical HIV-1-infected individuals, roughly one in 104 T cells
are latently infected, and active HIV-1 replication occurs in
only around 1% of these latently infected cells in viral out-
growth experiments9–11. Thus, latently infected cells, espe-
cially ones that can readily reactivate, are rare. Subsequent
studies have also found that multiple rounds of stimulation
can prompt latent cells that initially remained dormant to re-
activate, making it difficult to determine the total number of
latently infected cells that are capable of reactivation11,12.

Despite these challenges, recent work has provided in-

sights into the dynamics and heterogeneity of the LR. Sub-
sets of cells bearing integrated HIV-1 can undergo clonal
expansion in patients receiving suppressive ART13,14. The
degree of expansion of clones as well as their persistence
varies greatly and is associated with the specific integration
sites13 as well as stimulation by antigens15,16. While it has
been found that many highly-expanded clones contain defec-
tive proviruses17,18, at least half of the cells carrying intact
proviruses also belong to expanded clones18–21. A strong
negative correlation has also been observed between clone
size and reactivation rate in viral outgrowth assays20. As pa-
tients remain on ART for long times, the diversity of observed
clones decreases and the proportion of HIV-1 proviruses in
the largest clones progressively increases22.

Mathematical modeling has also provided insights into the
LR, with some model predictions validated in experiments23.
Studies investigating the relationship between latently in-
fected cells and plasma viremia during ART24–29 suggest that
as long as ART is marginally effective, the persistence of
latent virus is most strongly influenced by the longevity of
infected cells and the rate at which they reactivate. Recent
modeling work has also suggested that uneven homeostatic
proliferation of latently infected cells early in infection may
lead to the observed spread in clone sizes in the LR30.

To gain a deeper understanding of the persistence of the
latent reservoir (LR) in HIV-infected individuals, it is im-
portant to develop mathematical models that reflect the bi-
ological mechanisms that govern its dynamics. The LR is
composed of diverse clones with different T cell receptors
(TCRs), which affect their activation potential and antigen
specificity. Moreover, these clones have distinct viral in-
tegration sites, which influence their transcriptional activity
and reactivation probability. These factors contribute to the
clonal heterogeneity of the LR and its persistence. Thus,
there is a need to incorporate more comprehensive and bi-
ologically motivated features of clonal heterogeneity, which
are not typically incorporated in existing mathematical mod-
els of the LR.

We addressed this challenge by developing a novel
stochastic model of LR dynamics that explicitly accounts for
clonal heterogeneity. We consider genetic changes in HIV-
1 sequences and variable probabilities of reactivation, while
also incorporating the effects of antigenic stimulation on la-
tently infected clones with different T cell receptors. The
dynamics of these clonal populations are integrated with in-
teractions between free viruses, susceptible cells, and cells
that are actively infected.
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Fig. 1. Model schematic. (A) When a new cell is infected, it forms a new “clone” with a specific TCR sequence. The generation of defective proviruses, point mutations,
and active or latent infection are all determined by chance. (B) Clonal expansion and reactivation are possible outcomes of the dynamics of latently infected clones upon
stimulation by antigens.

Our model recapitulates experimentally observed features
of HIV-1 infection while also providing insights into LR
structure, dynamics, and persistence. We recover the decay
kinetics of HIV-1 RNA in blood, HIV-1 DNA in peripheral
blood mononuclear cells (PBMCs), and latent cells that re-
activate upon stimulation, which occur over widely-varying
time scales (days, months, and years) following the start
of ART31–33, without the use of time-varying parameters.
Among other findings, our model reproduces the observation
of defective proviruses in highly expanded clones17 and the
negative correlation found between clone size and reactiva-
tion probability for patients who have undergone ART treat-
ment for many years20. We find that stimulation by antigens
combined with heterogeneous reactivation rates for different
clones leads to a broad distribution of clone sizes, which are
stratified by their reactivation rates. Over long times, we find
that the LR becomes progressively more concentrated on a
small number of clones with low reactivation rates, which
play a key role in LR persistence. These insights could in-
form the development of new therapeutic approaches to re-
duce the size of the LR and achieve a functional HIV-1 cure.

Results

Stochastic model incorporating LR heterogeneity

Inspired by past modeling work31,34–36, our model
(Figure 1A) consists of four main populations: uninfected
CD4+ T cells (T), productively infected activated CD4+ T
cells (A), latently infected resting CD4+ T cells (L), and
HIV-1 virions (V). All cells have finite lifespans determined
by their respective death rates (see Methods for a complete

list of parameters and supporting references). We used a con-
stant replacement rate λT to approximate the replenishment
of uninfected target cells from the thymus37–39. The rate of
production of virions is given by the product of the death rate
of actively infected cells µA

40 and the viral burst size n41.
Virions are then cleared at a constant rate c42.

HIV-1 virions can infect susceptible CD4+ T cells. A
small fraction of infections, pdef , will result in defective inte-
grated proviruses due to effects like large deletions or hyper-
mutation. During ART, this leads to proviruses with fatal de-
fects outnumbering intact proviruses by a factor of 10−50 to
122. HIV-1 also mutates during infection due to error-prone
reverse transcription, with an estimated error rate of 3×10−5

per base per replication cycle43–45. Given the length of the
HIV-1 genome, this implies that approximately a third (pmut)
of successful infection events will lead to a mutation. Finally,
a fraction pL of infection events will result in latent rather
than active infection. We fit pL such that the HIV-1 DNA
per 106 PBMCs at the beginning of ART was in the range
103 − 104, consistent with patient data31. Consistent with
reported HIV-1 RNA levels during ART32,46 and following
previous modeling studies28, we assume that viral replication
is attenuated but not perfectly suppressed during ART.

To account for the heterogeneity of latently infected cells,
we modeled each latently infected clone individually, in-
cluding the expansion and antigen-driven proliferation of
individual clones (Figure 1B). Clones are defined as la-
tently infected cells with identical T cell receptors, integrated
proviruses, and integration sites. Each time a new clone is
created through a latent infection event, it is assigned a ran-
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Fig. 2. Distribution of clones in the HIV-1 latent reservoir early in infection. Most clones are small and have high reactivation probabilities. However, as time passes,
clones with lower reactivation probabilities begin to grow in size. Stimulation from antigens drives some rare clones with very low probabilities of reactivation to large sizes.

dom probability of reactivation (Methods), consistent with
the observation that integration is stochastic and different in-
tegration sites can affect the capacity for reactivation47. In
addition, each clone is stimulated by a background concentra-
tion of antigen that fluctuates over time (Methods), inspired
by past models of T cell repertoire dynamics48. We assume
that the homeostatic death and proliferation rates are the same
for all clones; however, stochastic differences in antigenic
stimulation drive differences in clonal proliferation. Here our
approach differs from previous models that considered a con-
stant rate of reactivation for latently infected cells28 or differ-
ent cell populations with different half-lives27. We simulated
our model using a system of stochastic differential equations
that describe the dynamics of cells during HIV-1 infection
both before and during ART (Methods).

Seeding of the reservoir and clonal proliferation pre-ART

We first simulated the seeding and development of the latent
reservoir during the first months of infection. Simulations
begin with a number of virions in the system and zero ac-
tive and latently infected cells (Methods). Even during the
first weeks of infection, we observed a large number of dis-
tinct latently infected clones in the reservoir. Most clones are
very small: for up to a year after infection, the average clone
size is less than 10 cells, with a median clone size of 2 cells
(Figure 2). During this time, the largest clone is typically
smaller than 1000 cells. Most of these clones are also short-
lived. The average age of a clone after one year of infection is
15 days, with a median age of 6 days. Such short-lived clones
are highly likely to reactivate, with an average probability of
reactivation pR around 9%.

During this early phase, some clones will be stimulated
to proliferate by exposure to antigens. However, the effect
on different clones in the reservoir differs substantially de-
pending on how likely the latent virus is to reactivate when
stimulated. In clones with low reactivation probability, pro-
liferation due to antigenic stimulation typically results in net
growth. In clones that readily reactivate, however, the reac-
tivation of latent virus dominates, suppressing proliferation
or even leading to the elimination of these clones. These dy-
namics lead to a progressive increase in the number of clones
with low reactivation probabilities and large clone sizes over
time.
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Fig. 3. Latent reservoir dynamics after ART initiation in an example simula-
tion. (A) ART first results in the rapid decline of plasma viral load 31, first due to the
death of actively infected cells and later driven by the elimination of small clones in
the LR. (B) Over slightly longer times, the number of latently infected cells steadily
declines 31 as small clones die out and are no longer quickly replenished by new
infections. (C) Infectious units per million (IUPM), a measure of cells in the LR ca-
pable of reactivation, declines over the course of years, approximately following the
44-month half-life measured in clinical data 49.

Kinetics of plasma viral load, HIV-1 DNA, and the inducible
viral reservoir after ART initiation

After the LR has been seeded, we simulated the response of
viral populations, including both latent and actively infected
cells, to long-term ART. To simulate viral kinetics during
ART, we decreased viral infectivity β due to treatment (Meth-
ods), keeping all other parameters constant.

Clinical data shows that after initiating ART, HIV-1 RNA
in blood decreases rapidly over the course of around 2 weeks,
with observed half-lives tRNA,early

1/2 of 0.9-1.9 days31,50. This
is followed by a more gradual decline over the next 4 weeks
(tRNA,late

1/2 ∼ 7.8-27.2 days31,50). The total number of la-
tently infected cells, measured by HIV-1 DNA in PBMCs,
decays steadily over the first few months on ART (tDNA

1/2 ∼
99-133 days). Infectious units per million PBMCs (IUPM),
measured in viral outgrowth assays (Methods) declines very
slowly, with a measured half-life tIUPM

1/2 of approximately 44
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Fig. 4. Dynamics of the latent reservoir during ART. (A) As ART begins, many clones are observed with different sizes and probabilities of reactivation. Reactivation and
random fluctuations lead to the preferential loss of small clones and ones with high probabilities of activation over time. The largest clone size scales roughly with the inverse
of the reactivation probability, a relationship that is stable over time. (B) Despite viral replication, few mutations accumulate in latent clones during ART.

months49.
Our model quantitatively recovers the decay rates of HIV-

1 RNA and latently infected cells spanning days, months,
and years on ART (Figure 3). In our simulations, viral load
first drops sharply, which is primarily driven by the death
of actively infected cells (Figure 3A). At the same time,
small clones are gradually eliminated through reactivation or
random cell death. Due to reduced viral replication, these
clones are no longer replenished at the same rate, leading to
a net decline in the total number of latently infected cells.
Clones with high reactivation probabilities are depleted more
rapidly than those that do not readily reactivate. Collectively,
these factors lead to a shift in the LR toward larger clones
with lower rates of reactivation, slowing the decline in viral
load and HIV-1 DNA in PBMCs (Figure 3A-B). As larger
clones are slowly eliminated, we find a decline in the in-
ducible reservoir consistent with measurements from clinical
data (Figure 3C).

Long-term clonal dynamics in the latent reservoir

During ART, clones with higher probabilities of reactivation
have a shorter effective survival time than clones with lower
probabilities of reactivation. We therefore find that the aver-
age probability of reactivation decays over time. However,
clones that readily reactivate are not entirely eliminated. Oc-
casional reactivation of latent cells from large clones leads
to bursts of viral replication that partially reseed the reser-
voir. These dynamics result in a long-term quasi-steady state,
where small clones with high probabilities of reactivation
turn over frequently while large, quiescent clones slowly fluc-
tuate in frequency.

Over long times, we find that, for the largest clones, clone
size n scales inversely with the probability of reactivation pr,
n ∝ p−α

r , with an exponent α ∼ 1 (Figure 4A). This finding
is consistent with previous work that observed a power law
relationship between clone size and probability of reactiva-

tion in viral outgrowth assays in data from multiple subjects
years after ART initiation20. Clones that are small and/or
have low probabilities of reactivation (i.e., ones occupying
the lower left corners in Figure 4A) are particularly chal-
lenging to quantify in patient data because their probabilities
of being sampled in sequencing HIV-1 DNA from PBMCs
or viral outgrowth assays are exceedingly small. Such clones
are likely to be observed only once in data if they are sam-
pled, which is consistent with observations in clinical data20.

Our results also show that after a year on ART, the relative
size of large clones changes little over time. Collectively,
our simulations are consistent with longitudinal studies that
found few significant changes in the proportion of differ-
ent clones in the LR when sequencing proviral DNA22,51,52,
while significant changes in clonal distributions can be ob-
served when sequencing reactivated viruses from viral out-
growth assays51,52.

Presence or absence of HIV-1 evolution during ART

While ART strongly suppresses viral replication, it may not
be completely effective. Past modeling work has suggested
that low amounts of replication can continue after treat-
ment intensification and may influence the level of detectable
virus, but are unlikely to allow for long-term sequence evolu-
tion25,27–29. Others have argued that ongoing HIV-1 replica-
tion can lead to measurable viral evolution during ART53–55,
though this point is hotly debated56,57, and multiple stud-
ies have failed to observe evolution in the reservoir during
ART58–61.

To test whether or not viral sequence evolution would oc-
cur in our model, we tracked the number of accumulated mu-
tations in individual clones after ART initiation. In our sim-
ulations, the mean number of new infection events resulting
from active infection in a single cell is smaller than 1 due to
the suppressive effects of ART. This implies that persistent,
self-sustaining active replication is impossible. However, be-
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cause our model is stochastic, we observe occasional “bursts”
of viral replication. Despite occasional bursts, we found no
evidence for progressive accumulation of mutations or ge-
netic divergence over time (Figure 4B), consistent with past
observations58–61 and modeling work25,27–29.

One prominent prior study that argued for continued HIV-
1 evolution during ART was based on observations made
during the first year of ART55. As stated above, we do
not find evidence for significant sequence evolution in our
model. However, we do observe immense changes in individ-
ual clone sizes during early ART, especially for many small
clones that are eliminated. These dynamics support previous
arguments that sampling of different clones could explain the
appearance of evolution shortly following ART62.

Effects of early intervention or elite control on LR structure

Recent studies found that the composition of the LR is altered
in individuals who have undergone early ART treatment63

and in elite controllers, who naturally maintain very low lev-
els of viral replication even in the absence of ART64. To
mimic elite control or early ART, we adjusted our simulations
to include a sharp drop in viral infectivity 12 days after ini-
tial HIV-1 infection (Methods). Unlike previous simulations,
early control results in a much smaller number of clones in
the LR (Figure 5A), which quickly becomes dominated by
just a few large clones (Figure 5B). Our simulations thus re-
capitulate studies showing that the LR in elite controllers or
those with early ART are mono- or oligo-clonal, with little
reactivation and background replication63,64.

Factors underlying long-term LR persistence

Despite suppressive ART, the latent reservoir persists for
decades in HIV-1-infected individuals. How do different
components of the LR contribute to its persistence? We find
that the presence of large latent clones is the most important
factor in the long-term persistence of the latent reservoir, de-
spite their low probabilities of reactivation. In fact, small pr

allows these clones to grow to large sizes with minimal de-
cay due to reactivation (Figure 4A). Due to their size, these
clones are also very unlikely to die stochastically due to fluc-
tuations in clone size, unlike smaller clones that turn over
rapidly.

Interestingly, the largest clones are not the ones that are
most likely to generate rebound viruses. On average, the rate
of viral outgrowth is proportional to the product of the clone
size and reactivation probability. In typical simulations, this
is maximized by clones with intermediate sizes and reacti-
vation probabilities. This is because clones with very small
probabilities of reactivation are fairly rare, and clones with
very high probabilities of reactivation tend to be small and
short-lived. Thus, even though we find that the largest clones
(with small probabilities of reactivation) are chiefly responsi-
ble for LR persistence, they may not be the typical first source
of outgrowing viruses during rebound.
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Fig. 5. Distribution of clones in the latent reservoir after early intervention.
(A) We simulated the effects of early intervention by initiating ART conditions 12
days after infection. At this time, there are few clones that are large or have small
probabilities of reactivation, limiting the potential for clonal expansion. (B) After 8
months, few clones remain.

Discussion

Here we developed a stochastic model of the latent reservoir
of HIV-1 that accounts for the inherent heterogeneity of dif-
ferent clones in the reservoir. Our mechanistic approach and
direct simulation of each clone allows us to delve deeper into
the underlying processes shaping reservoir dynamics. Our
model recapitulates changes in HIV-1 measurements in clin-
ical data over the scale of days (decline in HIV-1 RNA in the
blood after ART) to years (decline in IUPM over years on
ART). We also quantitatively recover a “power law” relation-
ship between clone size and reactivation for large clones, and
we find realistic distributions of clones in the LR in simu-
lations that mimic early intervention with antiretroviral drug
treatment.

Beyond comparisons with experimental and clinical data,
our model makes several predictions about the structure and
long-term dynamics of the latent reservoir. Our study sug-
gests that the LR consists of a very large number of clones,
especially small clones. Due to their small size and (for some
clones) low probability of reactivation when stimulated, they
would be difficult to detect through conventional means in
studies that seek to characterize the viral reservoir. Nonethe-
less, collectively, they contribute to the diversity of the latent
reservoir and serve as a potential source of viral rebound.
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Clonal heterogeneity, including the propensity of different
clones for reactivation and stimulation by antigens, emerged
as a critical factor to reconcile both short- and long-term dy-
namics of the latent reservoir after ART. Differences in prob-
abilities of reactivation lead to a slow but progressive “coars-
ening” of the reservoir, as clones that readily reactivate are
eliminated and larger, quiescent ones persist. The persistence
of clones with low probabilities of reactivation in our model
aligns with recent longitudinal studies that have reported the
positive selection of proviruses with lower transcriptional ac-
tivity during prolonged ART65.

Our simulations also show nuanced effects of sporadic vi-
ral replication during ART. With zero viral replication, all
small clones in the LR would ultimately be eliminated due to
random clone size fluctuations. However, the level of active
replication needed to sustain a population of small clones is
insufficient to produce long-term sequence evolution of the
virus25,27–29. This emphasizes an important distinction be-
tween viral replication and evolution, especially evolution
within the LR. Persistent, self-sustaining viral replication
will lead to the accumulation of mutations (i.e., evolution)
over time. However, the same is not true for sporadic bursts
of replication that cannot be sustained, and which must be
restarted from the same pool of unmutated latent viruses af-
ter previous active infections die out. Our model suggests
that sporadic replication during ART is consistent with ex-
perimental data, but persistent replication is not.

Past work has identified various factors that could affect
clonal proliferation, including different HIV-1 integration
sites47. Here, we found that random differences in antigenic
stimulation alone are sufficient to reproduce the observed
structure of the latent reservoir. This result should not be
interpreted as evidence that different integration sites do not
play a role in heterogeneous clonal expansion. Rather, our
work shows that differences in antigenic stimulation can al-
ready lead to stratification in clone sizes and dynamics. Ad-
ditional factors could also further contribute to the hetero-
geneity of the LR. For example, a proliferative advantage as-
sociated with specific integration sites could promote clonal
expansion, potentially extending the lifetime of the reservoir.

Many assays have been devised to quantify the magnitude
and diversity of the HIV-1 latent reservoir, but quantifying the
true size of the LR remains challenging11. To address this, a
hybrid approach combining stochastic modeling and statisti-
cal analysis that accounts for the limitations of experimental
noise, similar to proposals for T cell repertoire diversity es-
timation66, may offer an effective quantitative measurement
of the LR. Our work could contribute to this effort by provid-
ing a way to study small clones, which are difficult to access
experimentally, using a rigorous model constrained by exper-
imental and clinical data.

Understanding the structure and dynamics of the HIV-1
latent reservoir could aid in the development of HIV-1 cure
strategies that aim to eliminate or permanently suppress the
LR. Our model contributes to these efforts by providing a
quantitative description of the LR that is consistent with ex-
isting data, but which also extends to “unseen” areas that are

difficult to characterize experimentally. One important find-
ing relevant for HIV-1 cure strategies is that large clones that
are replication-competent but relatively unlikely to reactivate
play a key role in long-term persistence of the LR. In future
work, our model could be used to simulate responses to dif-
ferent types of therapeutic interventions, evaluating plausible
paths to an HIV-1 cure.
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Methods

Mathematical model

Our model consists of four main populations: uninfected
CD4+ T cells (T), productively infected activated CD4+ T
cells (A), latently infected resting CD4+ T cells (L), and
HIV-1 virions (V). All cells have finite lifespans determined
by their respective death rates, and virions are cleared at a
clearance rate c. Uninfected cells are produced at a constant,
fixed rate, and virions at a rate proportional to the number of
active cells. HIV-1 virions can infect target CD4+ T cells,
and upon infection, a small fraction will result in defective
cells due to effects like large deletions or hyper-mutations.
Functional proviruses will accumulate a mutation with prob-
ability pmut. Finally, a small fraction of infection events will
result in latently infected cells. To account for stochastic-
ity, these processes are modeled with probabilities instead of
rates.

To account for the heterogeneity of the LR in our model,
we define a latently infected clone as a set of cells that have
the same TCR, proviral DNA sequence, and integration site.
Individual clones will differ in how they are stimulated by
antigens and their propensity for reactivation. Due to differ-
ences in integration sites, each new clone Li is assigned a ran-
dom probability of reactivation pri . Following work describ-
ing dynamics of T cell repertoires67, we describe the stimu-
lation of each clone by antigens with fi(t) =

∑m
j=1 kijaj(t)

where kij is the interaction coefficient between clone i and
antigen j (when clones are cross-reactive), and aj(t) is the
overall concentration of an antigen j as a function of time.
We assume that antigen concentration decays exponentially
after its introduction at random times as pathogens are en-
countered and cleared, either passively or through the action
of the immune response.

When a latently infected cell is stimulated to divide, there
is a probability of the latent provirus reactivating, converting
the cell into an actively infected cell. In this case, the num-
ber of latent cells decreases by 1 and the number of actively
infected cells increases by 1. If no reactivation occurs, then
the latently infected cell proceeds to divide in response to the
antigen interaction.

The dynamics followed by a latently infected clone Li are

then driven by its basal division rate νL, death rate µL, prob-
ability of reactivation pri , and its interaction with antigens
fi(t). This gives the following stochastic differential equa-
tion (SDE):

dLi =[(1−2pri)fi +νL −µL]Lidt

+
√

(νL +fi +µL)LidWLi

(1)

As mentioned above, the function fi(t) encodes the fluctu-
ations of the environments as experienced by clone i. The
stochastic process giving rise to fi(t) is a sum of Poisson-
distributed, exponentially decaying spikes. This process is
not easily amenable to analytical treatment or simulations, so
following the approach of Desponds et al.67, we assume that
correlations among clones are weak and replace the function
with a simpler one with the same temporal autocorrelation,
that is an Ornstein-Uhlenbeck process:

dfi

dt
= −λf fi +

√
2γf ηi(t) . (2)

Here ηi(t) is a Gaussian white noise, λf is the inverse of
the characteristic lifetime of antigens, and γf quantifies the
strength of variability of the antigenic environment.

To model the active cells and virions we need to consider
what happens during an infection event, which is illustrated
in Figure 1. A virion with sequence k finds and successfully
infects a susceptible T cell at rate β. During infection, there
is a probability pdef that the integrated provirus will be de-
fective due to large deletions, hypermutation, or other similar
alterations. For proviruses that are not defective, we model
the accumulation of point mutations with probability pmut.
Finally, we consider a probability pL for the infection to be
latent. Each latent infection defines a new latent clone, since
we assume that the probability that two identical viruses in-
tegrate at the same location in two T cells with identical T
cell receptors in separate infection events is essentially zero.
This clone could share the same sequence as another latently
infected clone but have a very different integration site and
therefore a different probability of reactivation.

Collectively, the dynamics governing ac-
tively infected cells and virions are defined
by the following system of SDEs:

[
dAk

dVk

]
=

[∑n
i=1 fipriLi +

(
1−pdef

)
(1−pmut)(1−pL)βTVk −µAAk

γAk −βTVk − cVk

]
+DdW , (3)

DDT = B , (4)

B =
[∑n

i=1 fipriLi +
(
1−pdef

)
(1−pmut)(1−pL)βTVk +µAAk −

(
1−pdef

)
(1−pmut)(1−pL)βTVk

−
(
1−pdef

)
(1−pmut)(1−pL)βTVk γAk +βTVk + cVk

]
. (5)
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Finally, the susceptible T cells in our model follow the sim-
ple stochastic differential equation

dT =λT dt−βTV dt−µT Tdt

+
√

(λT +βTV +µT T )dWT .
(6)

Modeling the reactivation probability distribution
Evidence suggests that different latent clones have different
propensities for reactivation68–72. Ultimately, this hetero-
geneity in reactivation plays a central role in concisely ex-
plaining widely differing and multiphasic decay rates of HIV-
1 RNA in blood, HIV-1 DNA in PBMCs, and IUPM observed
in clinical data. Of course, heterogeneous reactivation rates
are also essential to reproduce the observed association be-
tween the probability of reactivation in viral outgrowth assays
and latent clone size.

However, there is no singular distribution of reactivation
probabilities that can uniquely reproduce the observed clini-
cal values. For simplicity, we opted to use a lognormal distri-
bution, which is a natural choice when a variable (i.e., prob-
ability of reactivation) is obtained as the product of many
independent explanatory variables (e.g., virus genetic back-
ground, cell type, integration site, local chromatin context,
etc.72). Previous modeling work has used a lognormal dis-
tribution for turnover rates to define uneven proliferation of
clones in the first year of infection73. Modeling the probabil-
ities of reactivation with this distribution, which is grounded
in the underlying biology of latent infection and consistent
with clinical data, allows us to extend our model not only to
active infection but also to describe long-term dynamics of
the latent reservoir during ART and viral rebound.

We explored various values of µ, the average of the log-
arithm of probabilities of reactivation. We then adjusted σ,
the spread of the logarithm of probabilities of reactivation
to align with the multiphasic decay patterns observed in vi-
ral load, HIV-1 DNA, and IUPM measurements. Generally,
as µ increases, the number of clones with high probabilities
of reactivation and smaller sizes increases. This leads to a
sharper drop in HIV-1 DNA post ART and a shorter time for
the reservoir to become oligo-/monoclonal. Thus, the values
of µ and σ are constrained, if not completely determined, by
existing clinical data. To illustrate our findings, we used a
log-normal distribution with µ = −1 and σ = 0.8. Experi-
mental measurements of the distribution of probabilities of
reactivation would be of great interest, allowing us to more
precisely model long-term behavior of the reservoir.

Modeling seeding of the reservoir and ART initiation
To simulate the initial establishment of the reservoir, we first
calibrated the parameter β to capture the observed rise in vi-
ral load during the first two Fiebig stages of infection74,75.
Subsequently, after a month, we decreased the value of β to
emulate the immune system’s suppression of viral replica-
tion, while maintaining fixed conditions for clonal prolifer-
ation prior to ART initiation. This adjusted β value corre-
sponds to the viral load levels observed during stages 4 and

5, and these conditions remain constant until the initiation
of ART, which in our primary example simulation occurs 60
months post-infection.

Upon ART initiation, the impact of treatment is simulated
by modifying the value of β. Specifically, this adjustment
aims to align the initial decline in viral load in simulations
with the decay of HIV-1 RNA in blood observed in clinical
data during the first two weeks following ART initiation76.
Given that the number of virions we observe is proportional
to the number of active cells and to the viral load, we fol-
low the methodology outlined in Hill et al.77 to estimate viral
load, where the number of actively infected cells is divided
by 1680. This value is the geometric mean of different esti-
mates from clinical data for the cell to virus ratio, obtained by
balancing viral production and decay at equilibrium with an
estimate that virus particles in the lymphoid tissue outnum-
ber the ones in circulation 100-fold. Throughout the pre-ART
and ART periods, all other parameters are held constant and
remain unchanged.

To replicate scenarios involving elite control or early ART
initiation, we introduced a rapid decline in infectivity (β)
shortly after the initial HIV-1 infection. Rather than wait-
ing for 60 months to commence ART, we transitioned to the
βART value after only half a month of infection.

Metrics for quantifying the HIV-1 latent reservoir and
infection
We used infectious units per million (IUPM) to quantify the
abundance of replication-competent HIV-1, which is mea-
sured in viral outgrowth assays. In our simulations, we used
the product of each non-defective clone’s size and its prob-
ability of reactivation, summed over all clones, as a proxy
for IUPM. This quantity should indeed be proportional to the
probability that a latent clone is sampled and successfully re-
activates when stimulated, which is analogous to IUPM.

We quantified HIV-1 DNA per 106 peripheral blood
mononuclear cells (PBMCs) by dividing the total number of
latent cells by the total number of T cells and multiplying the
result by 106.

As described above, we quantified HIV-1 RNA in blood
in our simulations by dividing the current number of actively
infected cells by 1680, the geometric mean of different es-
timates for the cell to virus ratio, obtained by balancing vi-
ral production and decay at equilibrium with an estimate that
virus particles in the lymphoid tissue outnumber the ones in
circulation 100-fold77.

Computational implementation
We used the Euler-Maruyama method to simulate the dy-
namics of our system of stochastic differential equations
(SDEs)78. This numerical technique allows us to approxi-
mate the deterministic component of the SDEs using the Eu-
ler method at each time step. To incorporate the stochastic
component, a random term is introduced, generated by a nor-
mally distributed random number with a mean of zero. The
standard deviation of this random term was determined by
the coefficients present in the SDEs.
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Due to the complexity of our model, it was not compu-
tationally feasible to simulate the full model using a real-
istic number of CD4+ T cells, roughly 1.75 × 1011 for a
typical adult79. We therefore used two complementary ap-
proaches to perform our simulations. First, we simulated the
full model at smaller system sizes (i.e., numbers of CD4+ T
cells). Second, we developed and simulated simplified mod-
els that could readily scale to larger system sizes. As de-
scribed in sections below, we carefully compared the output
of both the full and simplified models for smaller system sizes
to ensure that the simplified models accurately captured LR
dynamics from the full model.

Here we refer to the order of magnitude of a simulation as
the total number of CD4+ T cells included in the simulation.
For example, we refer to a simulation including a realistic
number of CD4+ T cells for an adult, around 1.75 × 1011,
as a simulation at order 11. The figures presented in the full
simulation were based on an order of magnitude of 7, that is,
a total number of CD4+ T cells of 1.75×107. In these simu-
lations, the thymic production of T cells, viral infectivity, and
metrics for quantifying HIV-1 presence and the LR are scaled
in proportion to the total number of T cells in the simulation.
For example, if the total number of CD4+ T cells decreases
by an order of magnitude, the infectivity β increases an order
of magnitude such that the product βT remains the same.

Simplified model for latent clones
It is not possible to make full simulations at higher orders
of magnitude than 7 due to computational limitations. This
order of magnitude however does not allow us to fully appre-
ciate changes in the clone size distribution during ART as the
majority of clones die. To overcome this, we use a simplified
model for latent clones alone, assuming a constant influx of
new clones during active infection and a different constant
rate of new clones during ART. These values were calibrated
based on fully detailed simulations at order 7 such that the
decays of latent cells, number of clones, and changes in the
distribution matched between the full simulation and the sim-
plified one (Supplementary Figs. 1 and 2). These parameter
values were then scaled up to run the simplified simulation
and make the figure shown in the main text for dynamics of
the latent reservoir during the first year on ART.

Simplified model for tracking mutations
We further extended our simplified model to study the num-
ber of accumulated mutations during ART. To develop this
model, we assumed a constant rate of mutation accumula-
tion, derived from the full simulation at order 7 and rescaled
as described above. Conservatively, we used the maximum
number of new mutant latent clones and active infections pro-
duced per time step over a window of one month after one
year on ART (Supplementary Fig. 3A). Because these mu-
tation accumulation rates were based on the maximum rate
of mutation accumulation in full simulations, we expect that
the number of mutations accumulated in our simplified simu-
lation should serve as a conservative upper bound on the true
number of accumulated mutations in a complete simulation.

Data and code
Raw data and code used in our analysis is available in
the GitHub repository located at https://github.com/
bartonlab/paper-HIV-latent-reservoir. This
repository also contains Jupyter notebooks that can be run to
reproduce the results presented here.
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Parameter Value Description Type Source
pdef 0.002 Probability that an infection event re-

sults in a defective HIV-1 provirus.
Fitted Fitted to recover ratios between defec-

tive and intact proviruses during ART
of 10−50 to 1 (ref.80).

pmut 0.33 Probability of a mutation during each
infection event.

Literature Obtained from estimates of the aver-
age HIV-1 mutation rate and genome
length81–83.

pL 0.05 Probability that an infection event will
result in a latent rather than active in-
fection.

Fitted Fitted to recover total levels of HIV-1
DNA per 106 PBMC at the beginning
of ART measured in patient data76.

λT 1.05 ×
1010 cells
month−1

Replacement rate of uninfected target
cells from the thymus.

Literature 3.5×108 CD4+ T cells per day at age
20, converted to months84.

µT 0.06
month−1

Net decay of susceptible cells. Equiv-
alent to the difference between prolif-
eration and homeostatic death of sus-
ceptible cells.

Literature Value needed to maintain typical size
of the CD4+ T cell compartment79.

βEI 4.0 ×
10−13

Infectivity rate during the first month
of infection.

Fitted Fitted to the rate of viral load increase
observed during the first 2 Fiebig
stages75.

βAI 1.8 ×
10−13

Infectivity rate during active infection
post immune response.

Fitted Fitted to recover the viral load ob-
served during Fiebig stages 4 and 5
(ref.75).

βART 6×10−14 Infectivity rate during ART. Fitted Fitted to recover the first stage of viral
load decay post ART76.

µA 21
month−1

Death rate of actively infected cells. Literature 0.7 day−1 = 21 month−1, converting
previous estimation from per day to
per month85.

γ 1.05×105

month−1
Production rate of virions. Literature Product of death rate µA (ref.85) and

the viral burst size n = 5000 (ref.86).
c 1.5 × 102

month−1
Clearance rate of free virions. Literature Rate converted to per month87.

λf 60
month−1

Inverse of the characteristic lifetime of
antigens.

Literature Converted to per month67.

γf 7.67
month−1

Strength of variability of antigenic en-
vironment.

Fitted Adjusted to recover IUPM fluctuations
consistent with observations88.

νL 29.4
month−1

Division rate of latently infected cells. Literature Division rate of T cells, converted to
per month67.

µL 36.595
month−1

Death rate of latently infected cells. Fitted Adjusted to recover average decay in
clones with low probabilities of reacti-
vation88.

Table 1. Table of parameters used in the model.
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Supplementary Fig. 1. Comparison of decays between full simulation and simplified model. Decays of the total number of latently infected cells as well as the rate of
new latent clones being produced. a, Start of ART. b, First year on ART.
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Supplementary Fig. 2. Comparison between full simulation and simplified model focusing on latently infected clones only. Side by side comparison of the clone
size distribution in a C vs pR plot between the full simulation (left) and the simplified one (right). Showing 4 timestamps during the first year on ART.
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Supplementary Fig. 3. Max and mean number of new mutated sequences. Number of new cells with mutated pro-virus per time step. Upper corresponds to actively
infected cells with a new mutated HIV sequence and the lower to new latently infected clones with new mutated HIV sequence. a, Max value over a window of a month. b,
Average value over a window of a month.
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