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Supporting Information Text

Evolutionary model with selection on binary traits. In our study, model the evolution of a population of N individuals subject
to recombination, mutation, and natural selection, following the Wright-Fisher (WF) model. For simplicity, we first describe
a model with only two alleles per site, wild-type (WT) or mutant (MT). Individuals possess a genetic sequence length of L,
resulting in a total of M = 2L genotypes. We further assume that there exist Λ binary traits, which depend on the presence or
absence of mutant alleles at specific sites, and which are also subject to selection. For clarity, we will use i, j, . . . indices to
denote the different loci or sites in the sequence, n,m, . . . are used for trait indices, and a, b, . . . represent genotype indices.
Finally, t1, t2, . . . , tK are used as generation (time) indices. The first two sets of indices are presented as subscripts, the genotype
indices as superscripts, and the generation indices are displayed within parentheses to indicate quantities that vary with time.

Let na(tk) represent the number of individuals with genotype a at generation tk, with za(tk) = na(tk)/N the frequency of
genotype a at generation tk. The vector z(tk) = (za(tk), zb(tk), . . . , zM (tk)) describes the state of the population at generation
tk. In our model, the probability of recombination occurring per site per generation is denoted by r. After recombination, the
mean frequency of genotype a at generation tk+1, is

ya(tk+1) = (1− r)L−1za(tk) + (1− (1− r)L−1)ψa(tk) . [1]

The term (1− r)L−1 gives the likelihood of an individual not experiencing recombination, and ψa(tk) denotes the probability
that the random recombination of any two individuals within the population results in an offspring of genotype a. This includes
scenarios where both parent and offspring share the same genotype a.

After recombination, the mean frequency of each genotype in the next generation pa(tk) is shaped by selection and mutation,

pa(z(tk)) =
ya(tk)fa + µ

∑
b|d(a,b)=1

[yb(tk)fb − ya(tk)fa]∑M

b=1 yb(tk)fb
. [2]

In this case, all alleles and loci share an equal mutation rate µ. For simplicity, we assume that each sequence undergoes at most
one mutation per generation, given the exceedingly low mutation rate µ. The notation b|d(a, b) = 1 indicates that genotypes a
and b differ by just a single mutation.

Due to the highly specific nature of TCR binding to peptide-MHC-I complexes, most nonsynonymous mutations within an
epitope are likely to significantly disrupt binding, thereby facilitating immune escape. For any given epitope, different mutation
paths can lead to a similar outcome: loss of recognition by T cells. Therefore, T cell escape for each individual epitope can be
effectively modeled as a binary trait. The fitness of genotype a, denoted as fa, is given by

fa = 1 +
L∑
i

sig
a
i +

Λ∑
n

sng
a
n . [3]

Contributions to fitness come from the effects of individual alleles (quantified by selection coefficients si) and traits (trait
coefficients sn). For the former, the impact of mutations is cumulative. In other words, the effects of mutant alleles at different
sites add together. In contrast, for any given epitope n, the presence of one or more nonsynonymous mutations results in gn
being assigned a value of 1, irrespective of the number of these mutations. However, we emphasize that the fitness effects of
different trait terms are additive, so that the effects of escape in two different T cell epitopes will add.

Path integral likelihood. Under WF dynamics, the probability of observing genotype frequencies z(tk+1) at generation tk+1,
given genotype frequencies of z(tk)= (za(tk), zb(tk), . . . , zM (tk)) at generation tk, is

P (z(tk+1)|z(tk)) = N !
M∏
a=1

(pa(tk+1))Nza(tk+1)

(Nza(tk+1))! . [4]

Consequently, the likelihood that the genotype frequency vector follows a specific evolutionary trajectory, or “path”, z =
(z(t1), z(t2), · · · , z(tK), is

P (z|z(t0)) =
K−1∏
k=0

P (z(tk+1)|z(tk)) , [5]

conditioned upon the initial state z(t0). This expression is difficult to work with directly, so we use several approximations to
make our analysis more tractable.

To simplify this expression, we will project dynamics to the level of individual mutant loci i and trait groups n, instead
of genotypes a. Here, we use the term “trait group” to refer to the set of all loci that contribute to the same CD8+ T cell
epitope. We denote the frequency of mutant alleles at site i in the population as xi, and the frequency of individuals with one

2 of 17 Yirui Gao and John P. Barton



or more nonsynonymous mutant alleles in trait group n as xn. Additionally, the frequency of paired mutant alleles xij is used
to describe the correlation between different mutations. The formulas for these are as follows:

xi =
M∑
a

gai za ,

xij =
M∑
a

gai g
a
j za ,

xn =
M∑
a

ganza =
M∑
a

[
1−

∏
i∈n

(1− gai )

]
za [6]

Here the term gai indicates whether genotype a contains a mutant allele at locus i, with the wild type (WT) having gai = 0 and
the mutant type (MT) having gai = 1. Similarly, gan specifies whether trait group n contains a mutant allele. If all loci in trait
group n of genotype a are WT, then gan = 0; however, if there is at least one mutant allele in the trait group, meaning that at
least one locus within the trait group has gai = 1, then gan = 1.

It is worth noting that, in most cases, trait groups can be regarded as a special type of locus. Consequently, we utilize the
new subscripts i, j to represent generic loci — encompassing both individual loci and trait groups — to distinguish them from
individual loci i, j. Taking the pair allele frequency as an example, xij will represent not only the correlation between different
individual loci but also between an individual locus and a trait group, as well as between different trait groups.

Next we consider the dynamics of the mutant allele frequencies (and trait frequencies) in the diffusion limit(1). We
assume that the population size N → ∞ and that the selection coefficients, mutation rate, and recombination rate are
all small (O(1/N)). In this limit, applying methods from statistical physics, the probability of an evolutionary trajectory
x = (x(t1), x(t2), . . . , x(tK)) can be quantified using a path integral (see refs. (2–4) for more details on this approach)

P (x|x(t0)) ∝ exp
[
− N

2 S(x)
]
, [7]

S(x) =
K−1∑
k=0

1
∆tk

L+Λ∑
i,j=1

[∆xi(tk)−∆tkDi(tk)] [Cij(x(tk))]−1 [∆xj(tk)−∆tkDj(tk)] . [8]

Here ∆tk = tk+1 − tk and ∆xi(tk) = xi(tk+1) − xi(tk). S(x(tk)) is referred to as the action in physics. In this expression,
trait terms are considered as special individual loci, thus the total length of frequencies is the length of generic loci, which is
L+ Λ (binary case). In statistical physics, Di(tk) and Cij(tk)/N are commonly referred to as the drift vector and the diffusion
matrix respectively, which will be discussed in the following section. To prevent confusion, here we note that the drift vector
quantifies the effects of natural selection, mutation, and recombination, which affect the expected change in allele frequencies,
and not genetic drift.

The drift vector and diffusion matrix. In this section, unless otherwise specified, the time parameter for all physical quantities is
assumed to be tk, and the corresponding time indices will be omitted. We first begin with the diffusion matrix Cij/N , which is
the same for both allele and trait frequencies

Cij

N
= 〈(xi(tk+1)− xi(tk))(xj(tk+1)− xj(tk))〉 ≈ 1

N

{
xi(1− xi) i = j ,

xij − xixj i 6= j .
[9]

The expectation in the first line is taken over the WF model dynamics, which yields the second line in the limit that N is large
and terms of O(1/N2) are omitted. Here i, j can be used in both individual and trait terms. xi is the mutant frequencies at
generic loci i, while xij is the frequency of individuals with mutations at both generic loci i and j (see Eq. (6)). The diffusion
matrix quantifies the amount of “noise” in changes in allele/trait frequencies due to finite population size N , i.e., genetic drift.

The drift vector describes the expected change in mutant allele frequencies in time due to selection, mutation, and
recombination. For the trait frequencies, this term is especially complex.

Using Eq. (1) and Eq. (2) and dropping infinitesimals smaller than O(1/N), we find

Di = 〈xi(tk+1)− xi(tk)〉

=
∑
a

gai (pa(z)− za)

≈
M∑
a

gai

{[ L∑
j

gaj sjza −
M∑
b

L∑
j

gbjsjzazb

]
+
[ Λ∑
n

gansnza −
M∑
b

Λ∑
n

gbnsnzazb

]
+
[
µ
∑

b|d(a,b)=1

(zb − za)
]
+
[
r(L− 1)(ψa − za)

]}
.

[10]

Here we have four terms, which describe the evolutionary forces of selection for individual mutant alleles, selection on binary
traits, mutation, and recombination, respectively.
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Contributions due to natural selection can be written in the same way for both mutant alleles i and traits n (which, as
a reminder, we group under a general bold-faced index i). Using Eq. (6) and the expression for pair allele/trait frequencies
xij =

∑M

a
gai g

a
j za, these terms become

L∑
j

(xij − xixj)sj +
Λ∑
n

(xin − xixn)sn =
L+Λ∑

j

Cijsj . [11]

The mutation and recombination terms are different for mutant alleles and for traits. Here, we start with the mutation term
for mutant alleles, which can be simplified as

µ

M∑
a

gai
∑

b|d(a,b)=1

(zb − za) =µ
M∑
a

∑
b|d(a,b)=1
ga

i =gb
i

(gbi zb − gai za) + µ

M∑
a

∑
b|d(a,b)=1
ga

i 6=g
b
i

((1− gbi )zb − gai za)

=0 + µ

M∑
a

((1− gai za)− gai za)

=µ(1− 2xi) . [12]

For the first term, b|d(a, b) = 1 , gai = gbi means that a and b have the same allele at locus i, but they differ by one mutation at
some other locus. If we sum over every genotype, these terms make no contribution to the change in mutant allele frequency i
because every pair (a, b) has one conjugate pair (b, a). The second term is not symmetrical, but every a only has one b that
can satisfy the conditions b|d(a, b) = 1 , gai 6= gbi (i.e., the genotype with a MT allele at site i flipped to WT, or vice versa).
Thus, we can use a to replace b and its summation.

Physically, Eq. (12) expresses the total flux due to mutation, which is the probability of mutation that can change the allele
at locus i from WT to MT (flux in) minus the probability from MT to WT (flux out). The probability of MT at locus i is the
mutant allele frequency. Since the state for the allele is binary, the sum of MT frequency and WT frequency is 1. Thus, we can
easily simplify the expression as

µ

M∑
a

gai
∑

b|d(a,b)=1

(zb − za) = µ(1− xi)− µxi = µ(1− 2xi) . [13]

Next, we will consider the recombination term for mutant alleles. Similar to the mutation term, this represents the
recombination flux for locus i. However, the expected mutant allele frequency change due to recombination alone is always
zero. This is because, for every case in which a sequence without a mutant allele recombines with a sequence that has a mutant
allele such that the recombinant sequence has the mutant allele (thus increasing the mutant allele frequency), there is another
case with the MT and WT sequences switched (thus decreasing mutant allele frequency by the same amount) which occurs
with the same probability. Thus, this term vanishes by symmetry.

In total, then, the drift vector for mutant frequencies i is

Di =
L+Λ∑

j

Cijsj + µ (1− 2xi) . [14]

Now we consider the mutation and recombination terms for traits. These terms are more complex because the conditions
that can change the trait are different from the ones for a single locus, and generally depend on the state of all alleles that
contribute to the trait. For example, mutation at one site within a trait group n will change the allele from WT to MT (or vice
versa), but it may not change the state for the trait as a whole if there are other mutations among the trait group.

Let us consider the mutation term for traits, which we can expand as

µ

M∑
a

gan
∑

b|d(a,b)=1

(zb − za) = µ

M∑
a

[ ∑
b|d(a,b)=1
ga

n=gb
n

(gbnzb − ganza) +
∑

b|d(a,b)=1
ga

n 6=g
b
n

((1− gbn)zb − ganza)
]
. [15]

As in Eq. (12), the first term is also zero. However, the second mutation term is different. In this case, genotypes a and
b that satisfy b|d(a, b) = 1 , gan 6= gbn do not exhibit a one-to-one correspondence: if all alleles in the trait group for a are
WT, for example, then there are many b can satisfy these conditions and the number of b is the length of the trait group n.
Alternately, if genotype a contains more than one mutant allele in the trait group, then it cannot be changed to WT within a
single mutation.

To address this issue, we introduce a new variable, denoted as yin, which is the frequency of genotypes that contain only one
mutation in trait group n, and the mutation is at locus i. This can be written as

yin =
M∑
a

gang
a
i

∏
j 6=i,j∈n

(1− gaj )za . [16]
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With this new variable, we can rewrite the mutation term for traits. Physically, to change the trait value (starting from
WT), every locus among the trait group needs to be considered, as any mutation in these loci can change the state of the trait
group from WT to MT. Conversely, mutation can only change the trait value from MT to WT if it affects genotypes that have
one mutation among the trait group (i.e., by converting the single mutant allele to WT). Thus,

µ

M∑
a

gan
∑

b|d(a,b)=1

(zb − za) = µ
∑
i∈n

((1− xn)− yin) . [17]

Finally, we turn to the recombination term for traits. Here we start by building physical intuition for the result. In each
generation of the evolutionary process, recombination occurs numerous times. For this issue, we need to focus solely on the
recombination that can alter the state of a trait group. In particular, we must enumerate the probabilities of recombination
events that change traits and for which the reverse process (i.e., switching the order of the recombination partner sequences,
which has the same probability) does not change the trait in the opposite way, thus yielding no net expected change in the
trait frequency.

We use the index k to represent a recombination breakpoint. To change a trait’s value, k must be located after the first site
in the trait group and before the last. Since we have assumed that the recombination probability per site per generation r is
small, we will only consider cases where a single recombination breakpoint falls within the trait sites, but the analysis below
could be generalized to allow for two or more breakpoints. If recombination occurs between two sequences, where one is WT
for trait group n and the other is MT before and after a breakpoint k for the same trait, then all the recombinants will be MT
for trait group n. For such sequences, recombination can change WT to MT for the trait, but not MT to WT. This is the only
scenario in which recombination leads to a net increase in trait frequency.

In the opposite direction, consider recombination between two sequences, where one is WT for trait n before a breakpoint k
and MT after, and the second sequence is MT before k and WT after. Thus, both sequences are MT for trait n, but through
recombination a WT sequence can be produced. This is the only recombination process that leads to a net decrease in trait
frequency.

Collecting these two terms together, we arrive at the following expression for the net expected change in trait frequency due
to recombination,

M∑
a

ganr(L− 1)(ψa − za) = ψna_in − ψna_out = r
∑
k∈n

P k,nW,WP
k,n
M,M − r

∑
k∈n

P k,nW,MP
k,n
M,W . [18]

Here P k,nM,W represents the frequency of sequences that have at least one mutant allele in the trait group n on or before site k,
and all WT alleles in the same trait group after k. In total, then, the drift vector for traits is

Dn = 〈xn(tk+1)− xn(tk)〉 =
L+Λ∑
j

Cnjsj + µ
∑
i∈n

((1− xn)− yin) + r

(∑
k∈n

P k,nW,WP
k,n
M,M −

∑
k∈n

P k,nW,MP
k,n
M,W

)
. [19]

Two-step model of HIV-1 recombination. As noted in the main text, HIV-1 recombination actually occurs in multiple steps,
including the coinfection of a single cell by two distinct viruses and reverse transcriptase template switching between the two
distinct RNA strands. Let us refer to the probability of coinfection as pc and the probability of template switching as ps per
base per replication cycle. We explored how this two-step model of recombination would affect our estimates of selection.

As before, we must search for recombination events that could affect the escape frequency for a particular epitope. In this
model as well, recombination breakpoints must occur within an epitope (i.e., after the first site in the epitope and before the
last site) to affect escape frequency. Previously, we had assumed a single effective recombination rate per site r � 1. Now, we
break this into two steps, with probability pc for coinfection and ps per base for template switching. Naively relating r ∼ pcps,
the difference between these models becomes clear: the probability of observing two recombination breakpoints within some
region is proportional to r2 in the one-step model, but pcp2

s in the two-step model.
Previously, we had assumed that multiple recombination events within the same epitope should be very unlikely, and

that the dominant contribution to changes in escape frequency should therefore come from single recombination events (i.e.,
r2 � r). To make the same approximation in the two-step recombination model, we would need to show that pcp2

s � pcps.
While estimates for the template switching probability vary, high-end estimates are generally around ps ∼ 10−3. There is
also evidence for potential hotspots of recombination in HIV-1, where template switching may occur more frequently(5–8).
However, even if template switching were to occur at a rate of 10−2 per base in a recombination hot spot, the assumption that
pcps � pcp

2
s is likely to be a very reasonable one. Thus, to leading order in the template switching rate, one could replace the

more biologically realistic two-step recombination process with an effective one-step process with an effective rate r = pcps to
extract the dominant contributions of recombination to escape frequency change (and therefore to inferred selection).
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Marginal path likelihood (MPL) inference. To find the fitness effects of alleles/traits that best fit the data, we will attempt to
find parameters si that maximize the likelihood of the data. Since the likelihood P is proportional to action S (see Eq. (7)),
the unknown selection coefficients si and trait coefficients sn that can maximize action S will maximize the path probability P .

To control our estimates, we also introduce a Gaussian prior distribution for the selection coefficients with mean zero and
precision γN ,

Pprior(s(t)) = 1
(2πσ2)(L+Λ)/2 exp

(
− 1

2σ2 s
T s
)
∝ exp

(
−N2 γs

2
)
. [20]

Here we have absorbed the population size N into the width of the prior for convenience (see below). Including the prior
distribution, the action becomes

S(x(tk)) =
K−1∑
k=0

1
∆tk

L+Λ∑
i,j=1

{
[∆xi(tk)−∆tkDi(tk)]× [Cij(x(tk))]−1 [∆xj(tk)−∆tkDj(tk)]

}
+
L+Λ∑

i

γs2
i [21]

Finally, we can apply Bayes’ theorem to infer selection coefficients ŝi that maximize the posterior distribution, providing the
best compromise between the prior and the likelihood. While the posterior distribution is a complicated function of allele/trait
frequencies, it is simply a Gaussian function of the selection coefficients. This allows us to write an analytical expression for
the maximum a posteriori parameters, as shown in Eq. (2) in the main text, with

Cint =
K−1∑
k=0

∆tkC(tk) , [22]

∆x = x(tK)− x(t0) , [23]

µfl =


K−1∑
k=0

∆tkµ(1− 2x(tk)) ,
K−1∑
k=0

∆tkµ
∑
i∈N

(1− xn(tk)− yin(tk)) ,
[24]

Rfl =


0 ,
K−1∑
k=0

∆tkr
(∑
k∈n

P k,nW,WP
k,n
M,M −

∑
k∈n

P k,nM,WP
k,n
W,M

)
.

[25]

Here, the top expressions for µfl and Rfl are for mutant alleles, and the bottom ones are for traits. In simulations, we used
γ = 1 for selection coefficients and 0.1 for traits. In noisier HIV-1 data, we used γ = 10 for selection coefficients and 1 for traits.

Extension to multiple alleles per locus and asymmetric mutation probabilities. To study real sequences, we can extend the
simple model presented in the previous sections to allow for multiple alleles per locus and asymmetric mutation probabilities.
We use α, β, . . . indices to represent different alleles (ranging, for example, over nucleotides or amino acids), where we write the
total number of possible alleles at a locus as l. Our fitness model is then:

fa = 1 +
L∑
i

l∑
α

si,αg
a
i,α +

Λ∑
n

sng
a
n . [26]

Similarly, si,α represents the selection coefficient for allele α at locus i, and gai,α equals 1 if genotype a has allele α at locus i.
The trait term is the same as the binary case since it does not have a natural counterpart (only 2 states, WT and MT). We
use xi,α(tk) to represent the frequency of allele α at locus i at generation tk, and µαβ to denote the probability per locus per
generation of mutation from allele α to β. Following parallel arguments to before, the MPL estimate of the selection coefficient
si,α for each allele α at each locus i and the trait coefficients sn can be obtained.

First, we write the diffusion matrix Ciα,jβ(tk)/N ,

Ciα,jβ(tk) = xiα,jβ(tk)− xiα(tk) · xjβ(tk). [27]

where xiα,jβ(tk) is the frequency of sequences with alleles α and β at loci i and j at generation tk. When one of the indices
corresponds to a trait, allele subscripts are not needed. For example, the covariance between trait group n and allele α at locus
i can be written as Cn,iα(tk) = xn,iα(tk)− xn(tk) · xiα(tk).

The estimated selection coefficients for alleles are then

si,α =
L+Λ∑

j

l∑
β

[K−1∑
k=0

∆tkCiα,jβ(tk) + γÎ
]−1

iαjβ
·
[
xjβ(tK)− xjβ(t0)−

K−1∑
k=0

∆tk
∑
δ 6=α

(µδαxjδ(tk)− µαδxjα(tk))
]
, [28]

6 of 17 Yirui Gao and John P. Barton



and the selection coefficients for traits are given by

sn =
L+Λ∑

j

l∑
β

[K−1∑
k=0

∆tkCn,jβ(tk) + γÎ
]−1

njβ
·
[
xjβ(tK)− xjβ(t0)−

K−1∑
k=0

∆tk
∑
i∈n

∑
δ 6=ε

∑
ε

(
µεδy

iε
n − µδεyiδn (tk)

)
−
K−1∑
k=0

∆tkr

(∑
k∈n

P k,nW,WP
k,n
M,M −

∑
k∈n

P k,nM,WP
k,n
W,M

)]
. [29]

Here the index ε runs over WT alleles and synonymous mutations for each binary trait n. This is because only nonsynonymous
mutations contribute to changes in the trait in our model.

In this version of the model, we compute selection coefficients for both mutant and WT alleles. However, what is important
is not the selection coefficient for an individual allele in isolation, but rather the change in fitness upon mutation. Thus, the
selection coefficients we report are normalized by subtracting the WT selection coefficient from the selection coefficient of each
allele at each locus (siα − siW ). In this way, the selection coefficients are normalized such that the WT selection coefficient is 0,
and the selection coefficients for other alleles quantify the advantage or disadvantage relative to WT. In the limit that the
selection coefficients are small, one can show that the WF dynamics are invariant under such shifts in the selection coefficients.
In physics, this phenomenon is referred to as gauge invariance.

Simulation data. We simulated the WF model with discrete generations and binary (mutant/WT) states in Python. Briefly,
we evolved populations of sequences according to Eq. (4) over multiple generations, starting with an initial population of all
WT sequences and recording the entire evolutionary history. After simulation, we computed the single xi, double xij mutant
frequencies, and trait frequencies xn from the sampled sequences trajectories and used them to infer individual selection
coefficients (Eq. (28)) and trait coefficients (Eq. (29)). Parameter values are detailed in Supplementary Fig. S1. The
simulation and analysis code with original simulation data are contained in the GitHub repository.

Since real data typically contains only a small portion of population, and is not sampled at every generation, we also
studied how different sampling depths and sampling time intervals affect the performance of our method. We chose part of the
sequences from the population and time points to estimate individual selection and trait coefficients. ns denotes the number of
sequences we randomly selected from the population and ∆t is the time interval, which means we choose the data every ∆t
generations. The initial population and simulation parameters are described in Supplementary Fig. S2.

CD8+ T cell levels can fluctuate over time, suggesting that a time-varying binary trait selection coefficient would most
accurately describe this phenomenon. Thus, we also conducted a simulation with time-varying selection coefficients of binary
traits to test our approach. The results in Supplementary Fig. S1 demonstrate that the trait coefficients we estimate are
approximately equivalent to the average trait coefficient when selection varies over time. The parameter values are detailed in
Supplementary Fig. S1.

HIV-1 sequence data. We obtained HIV-1 sequence data from 13 individuals of the CHAVI 001 and CAPRISA 002 studies in
the United States, Malawi, and South Africa from the Los Alamos National Laboratory (LANL) HIV Sequence Database. We
applied several selection criteria(3) to minimize the influence of noise in the data, including removing the sequences with large
numbers of gaps, sites with high gap frequencies, and time points with very small numbers of sequences or large gaps in time
from the last sample. We also imputed ambiguous nucleotides with the most common nucleotides observed at the same site
within the same individual.

For these 13 individuals, sequence data consisted of 3′ and 5′ half-genome sequences, which were approximately 4,500 bp
in length. Our analysis focused only on polymorphic sites, where more than one nucleotide (including gaps/deletions) was
observed in an individual (approximately 100-900 bp in length). To infer selection, we used a mutation rate matrix estimated
in ref. (9) as input. We allowed the effective recombination rate r to vary along with viral load (VL), following recent work
that revealed increasing effective recombination rates in individuals with higher VL due to higher levels of coinfection (10).
To estimate r as a function of VL, we used a linear model with parameters roughly fit to the data of Romero and Feder
(r = 1.722× 10−10 VL + 1.39× 10−5). In our model, we dynamically determined the recombination rate based on the viral
load at each time point, which was measured in past work (11). For later stages of infection where VL was not measured,
we assumed that VL values remained unchanged from the most recent measurement, consistent with the establishment of a
viral set point in chronic infection. Although there are large spikes in VL during acute infection (resulting in a corresponding
recombination rate on the order of 10−3, compared to typical constant estimates of around 1.4× 10−5 (ref. (12))), it quickly
settles down to a value orders of magnitude lower. We treated the transmitted/founder (TF) sequence as the “wild-type”
sequence for each individual.

The locations of CD8+ T cell epitopes for these sequences were experimentally(11) or computationally(13) determined. In
order to disentangle the fitness effects escape from the effects of individual mutations, we focus on escape effects that can be
inferred independently from other contributions to fitness. This requires that the escape trait should be neither completely
correlated nor anti-correlated with other variants. Mathematically, we obtain the selection and escape coefficients that best fit
the data by solving a linear equation, Eq. (2), which has the form Ax = b. Here, the matrix A = Cint +γI and the vectors x = ŝ
and b = ∆x− µfl −Rfl. One can then compute the reduced row echelon form of the matrix A to determine which parameters
are linearly independent(14). The regularization term γI renders all parameters trivially linearly independent, so to identify
which parameters are linearly independent based on the data alone, we computed the reduced row echelon form of the matrix
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Cint for each individual and sequencing region. The escape coefficients which are dependent on other variables correspond
to the epitopes totally correlated with other mutations. These mutations could be either the individual escape mutations in
the epitope or the mutation outside the epitope due to a lack of observed sequence data. We then selected only the escape
coefficients that were linearly independent from all other variables for analysis (i.e., the “accessible” escape coefficients, in the
language of ref. (14)). These typically encompass epitopes containing three or more loci with nonsynonymous mutations, though
in some cases, two loci may suffice. Escape sites refer to polymorphic sites where nonsynonymous mutations were observed
in the reading frame of an independent (accessible) CD8+ T cell epitope. In this way, we anticipate that nonsynonymous
mutations in escape sites will affect T cell recognition. We consider the escape sites that can change the same epitope to be
part of a single “trait group.”

Calculation of effects of linkage on inferred selection. ∆ŝij can tell us the effects of linkage from variant i to j. To compute it,
we calculate the coefficients for mutant variant j and eliminate the influence from mutant variant i by artificially reverting
variant i to WT(3).

For mutant alleles, we generated a modified version of the sequence data where all mutant variants i are replaced by the
corresponding TF nucleotide for all sequences at all time points. For traits, we treat all mutant variants within one epitope as
WT. With these modified data, we can infer the coefficients again for all variants j, denoted as ŝ\ij . Then we define

∆ŝij = ŝj − ŝ\ij . [30]

Positive values of ∆ŝij indicate that linkage with variant i can increase the selection coefficient inferred for variant j and vice
versa. By computing the ∆ŝij , we can quantify the effect of linkage on inferred selection.

The effects of recombination on the inference. Unlike selection on individual alleles, which has been studied previously using
similar approaches(3, 4), the selection that we infer for binary traits is affected by recombination. How large is the contribution
of recombination in this analysis?

To answer this question, we inferred selection on mutant alleles and traits in simulations and in the HIV-1 data sets, with
and without the inclusion of recombination. In general, we find that the effect of recombination on the inferred coefficients
is small. This is reasonable, as recombination only affects the traits, which constitute a small portion of a sequence. For
simulation data, there are three traits in a sequence length of 50; however, for experimental data, it is often a few epitopes
contained within sequences that are thousands of base pairs long.

Simulation results (Supplementary Fig. S7) illustrate that the recombination term has negligible effects on the inference
of individual selection coefficients. For trait terms, incorporating recombination does lead to small but noticeable improvements
in inference. In HIV-1 data, the influence of the recombination term is small (Supplementary Fig. S8). Although the
recombination rate in HIV-1 is relatively high, the scenarios under which recombination will lead to net change in trait
frequencies are rare.

Data and code. Data and code used in our analysis is available in the GitHub repository: https://github.com/bartonlab/paper-
binary-trait-inference. This repository also contains Jupyter notebooks that can be run to reproduce our figures and analysis.
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Supplementary Fig. S1. MPL recovers selection from data with time-varying selection coefficients for binary traits. a, Simulated mutant allele frequency trajectories.
Outlined allele frequencies represent the alleles that affect one of the two traits. b, Trait frequencies and their contributing individual mutant allele frequencies (outlined in (a))
in the same simulation. The fitness contributions of individual mutations (c) and traits (d) that we infer are close to their true values. In c, error bars with black outlines represent
alleles that affect the traits. The true values for the selection coefficient for individual loci are constant while those for binary traits vary over time. Inferred trait coefficients are
close to the average values of time-varying coefficients over the course of the simulation. Distribution of (e) individual selection coefficient and (f) trait coefficient estimates
across 100 replicate simulations. The true value for the selection coefficients for the binary traits shown here is the average value. Simulation parameters: L = 50 loci with two
alleles at each locus (mutant and WT), ten beneficial mutants with s = 0.02, 30 neutral mutants with s = 0 and ten deleterious mutants with s = −0.02. We consider two
binary traits, each with three contributing alleles and time-varying trait coefficients. The selection coefficients for these two binary traits go from 0 to 0.1 over the beginning 200
generations and then go down to 0 over the remaining 800 generations. Mutation probability per site per generation µ = 2 × 10−4, recombination probability per site per
generation r = 2 × 10−4, population size N = 103. The initial population contains all WT sequences, evolved over T = 1000 generations.
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Supplementary Fig. S2. MPL recovers selection from complex dynamics even from limited data. Distribution of (a) individual selection coefficient and (b) trait coefficient
estimates across 100 replicate simulations, using the same parameters as in Fig. 1. Our approach is robust to finite sampling constraints, as measured by the accurate
classification of (c) beneficial and (d) deleterious mutants and (e) inference of trait coefficients, even when the number of sequences sampled per time point ns is low and the
spacing between time samples ∆t is large. AUROC, area under the receiver operating characteristic; NRMSE, normalized root mean square error. Simulation parameters:
L = 50 loci with two alleles at each locus (mutant and WT), ten beneficial mutants with s = 0.02, 30 neutral mutants with s = 0, and ten deleterious mutants with s = −0.02.
We consider Λ = 2 trait groups, each with three contributing alleles and trait coefficients s = 0.1. Mutation probability per locus per generation µ = 2 × 10−4, population
size N = 103. The initial population is all wild type, evolved over T = 1000 generations.
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Supplementary Fig. S3. Inclusion of escape coefficients substantially shifts inferred selection coefficients for escape mutations toward more deleterious values.
a, Distribution of inferred selection coefficients without escape traits. b, Distribution of inferred selection coefficients with escape traits. Reversions are slightly more likely to be
inferred to be beneficial/less like to be deleterious than non-reversions.
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Supplementary Fig. S4. The contribution of reversions to intrahost HIV-1 fitness gains is significant and grows over time. Reversions refer to mutations that revert
from the transmitted/founder (TF) variant to the nucleotide of the HIV-1 clade consensus sequence.
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Supplementary Fig. S5. The distribution of inferred selection coefficients with and without the inclusion of escape traits. a, Distribution of inferred selection
coefficients without escape traits. b, Distribution of inferred selection coefficients with escape traits. We note an enrichment in substantially beneficial mutations that are also
reversions to the HIV-1 clade consensus sequence. While some large-effect mutations shift substantially with the inclusion of escape traits (i.e., escape mutations), the effect on
the bulk of the inferred selection coefficients is minimal.
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Supplementary Fig. S6. Intrahost HIV-1 fitness gains due to CD8+ T cell escape mutations and reversions. In total, CD8+ T cell escape (see Fig. 2b) and reversions
(see Supplementary Fig. S4) make dominant contributions to HIV-1 fitness gains in vivo. Across the data sets from 13 people living with HIV-1 (PLHIV) that we studied, the
fraction of fitness gains due to escape and reversions is around 75% on average. At earlier times, T cell escape plays a larger role, while the contribution of reversions grows
steadily over time.
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Supplementary Fig. S7. Effects of recombination on inferred selection coefficients and trait coefficients in 100 replicate simulations. The distribution of inferred (a)
selection coefficients and (b) trait coefficients in simulations, using the same parameters as in Fig. 1, without including the effects of recombination in the estimator. c, d,
Analogous distributions of inferred coefficients when recombination is included in the estimator. The effects of recombination on the inferred parameters are subtle, with the
most prominent feature being a shift in the inferred trait coefficients toward the true value and away from zero.
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Supplementary Fig. S8. Effects of recombination on inferred escape coefficients in HIV-1 data. Distribution of inferred escape coefficients (a) without and (b) with the
inclusion of recombination in the estimator. Even though the effective recombination rate for HIV-1 is relatively high (r ∼ 1.4 × 10−5, and even higher during acute infection
when viral loads are high (10)), recombination events capable of altering trait frequencies are rare. The contribution of Rfl to the inferred escape coefficients is thus small.
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