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Supplementary Figure 1: Highly influential variants are far more likely than other variants to change
rapidly in frequency. For all genetic variants across all individuals and genomic regions considered in this study, we
computed the maximum change in frequency per day between successive sequence samples. For most variants (those
for which

∑
j |∆ŝij | ≤0.4), the maximum change in frequency per day is less than 1%. Highly influential variants,

which have large effects on inferred selection coefficients at other sites (
∑
j |∆ŝij | >0.4), are much more likely than

other variants to change rapidly in frequency.
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Supplementary Figure 2: Extensive recombination between CAP256 primary and superinfecting strains.
Individual CAP256 was infected by a distinct superinfecting strain of HIV-1 15 weeks after the primary infection [1].
Each row represents a sequence, with nucleotide variants different from the primary infecting strain highlighted. Soon
after superinfection, by 164 days after initial infection, recombinants between the primary and superinfecting strains
dominate the viral population. Recombination continues throughout infection, introducing substantial variation into
the VRC26 epitope region by 240 days after initial infection.
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Patient ID Abbreviated name Sampling times (days) Number of sequences 3′ Number of sequences 5′ Subtype

700010607 CH607 0 29 30 B
9 5 8
14 16 13
21 23 25

700010470 CH470 0 12 25 B
13 14 11
41 28 29
69 23 10
174 25 9
420 11 10
454 10

700010077 CH77 0 1 1 B
14 15 17
32 12 6
102 5
159 11 8

700010058 CH58 0 1 1 B
8 6 6
45 9 9
85 9 9
154 7
239 8
252 8
350 4

700010040 CH40 0 8 12 B
16 9 9
45 14 12
111 9 8
181 7 11
283 11 4
412 12 11
552 12 7

706010164 CH164 0 1 1 C
14 37 27
28 10 17
70 23 15
183 11 14
434 20 24

705010198 CH198 0 11 14 C
11 10 17
60 27 16

705010185 CH185 0 28 11 C
25 11 16
67 27 22
180 15
416 16

705010162 CH162 0 14 16 C
21 17 12
77 7 4
179 9 8
438 22 20

704010042 CH42 0 9 11 C
21 17 18
60 6 7
172 12 12
424 24 21
676 25 16

703010256 CH256 0 11 11 C
28 12 10
63 27 30
172 10 13
426 15 16
684 24 30

703010131 CH131 0 33 8 C
21 10 7
28 8 5
34 12 7
63 12 12
91 9 6
175 12 12
273 9 10
333 9 9

703010159 CH159 0 23 16 C
8 12 11
12 13 10
22 6 5
29 7 15
56 13 8
85 10 10
302 14 18

CAP256 42 7 C
164 16
212 11
240 29
268 13
296 21
338 14
416 13
660 20

Supplementary Table 1: Summary of the HIV-1 data. Sampling times and number of sequences per time point
for each individual and sequencing region after data processing. Most patients have similar sampling profiles. For
example, trajectory lengths are several hundred days in length for all but 3 individuals, CH198, CH77 and CH607,
where the trajectory lengths are < 200 days. Typically, around 7 to 15 sequences are available per time point, and
most of the times between successive samples ∆t are < 50 days, with the great majority < 100 days.
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1 Path integral approximation and MPL estimator of selection coeffi-
cients

This section presents detailed derivations of the path integral approximation and MPL estimator, as described in
Methods. To summarize, we first describe the WF model in Section 1.1, which accounts for evolutionary features
including mutation, selection, drift, recombination, and incomplete temporal sampling. An assumption in this model,
which will be subsequently relaxed, is that there are only two alleles at each locus, and mutation probabilities are
symmetric. After introducing the model, in Section 1.2 we present conditional moment expansions that are used
in Section 1.3 to derive (S21), the path integral expression for the probability of a path of genotype frequencies
(z(t1), z(t2), . . . ,z(tK)), conditioned on z(t0). In Section 1.4, this genotype-level analysis is used to derive (S26),
the path integral expression for the probability of a path of allele frequencies (x(t1),x(t2), . . . ,x(tK)), conditioned
on x(t0). The MPL estimate of the selection coefficients obtained from the path integral is derived in Section 1.5.
We then show in Section 1.6 that the same MPL estimate can also be derived from the genotype-level path integral,
demonstrating no loss of optimality from derivations based on an allele-level analysis. Finally, extensions to account
for multiple alleles per locus and asymmetric mutation probabilities are developed in Section 1.7.

Since our technical developments build on the basic machinery of diffusion approximations, tools that are commonly
applied in population genetics (see e.g., refs.[2, 3, 4, 5, 6]), a few words on the novelty of our analysis are in order.
Most notably, in addition to considering a multi-locus model which accounts for the effects of mutation and selection,
a novel feature of our work is that we explicitly account for recombination and incomplete temporal sampling. These
effects are practically important, but their incorporation complicates the analysis. Further extension to account for
multi-allele multi-locus dynamics with asymmetric mutational probabilities also presents a new contribution, and one
that is necessary for analyzing the HIV data in the main text. While path integral methods are familiar in physics[7],
these are relatively less known and employed in population genetics. Some exceptions include refs. [8, 9], where
they were employed for purposes other than statistical inference, and were developed under less generalized model
assumptions. Other related work has proposed strategies for inferring selection from observed evolutionary histories
based on deterministic models of population dynamics that ignore genetic drift[10]. The analysis we report here
presents a first path integral based framework for statistical inference which applies for generalized multi-locus WF
models. As a further conceptual novelty, our analysis shows that, for the model setting that we consider and under
the diffusion limit, the fitness effect of mutations are completely captured by the individual and pairwise mutation
probabilities, and higher order mutational correlations contain no further information.

1.1 Wright Fisher model

We start with a brief introduction to the WF model and the generalized parameter settings that we consider. At gener-
ation t, denote Z(t) = (Z1(t), . . . , ZM (t)) as the random genotype frequency vector, and thus z(t) = (z1(t), . . . , zM (t))
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corresponds to an observed realization of this random vector. (These vectors, as well as all other vectors that we define,
are taken as column vectors.) The stochastic dynamics of the genotype frequencies are governed by the transition
probabilities reported in Eq. (2)-(4) of Methods. At generation t+1, ya(t) recombination occurs, and as a consequence
of this action, the mean frequency of genotype a, conditioned on Z(t) = z(t), is given by

ya(t) = (1− r)L−1za(t) +
(
1− (1− r)L−1

)
ψa(z(t))

where the factor (1 − r)L−1 represents the probability of an individual not undergoing recombination, and ψa(z(t))
the probability of forming genotype a after recombination from individuals in generation t. This latter quantity is
given by

ψa(z(t)) =

M∑
c=1

M∑
d=1

Ra,cdzc(t)zd(t) (S1)

with Ra,cd denoting the probability that genotypes c and d recombine to form genotype a. The probability Ra,cd is a
complicated function of the number of breakpoints and the particular genotypes a, c and d; however as we will show,
we do not require the exact form of Ra,cd for our derivations. After recombination, the mean genotype frequencies at
generation t + 1 are further shaped through selection and mutation. Specifically, after recombination, selection and
mutation, the mean frequency of genotype a, conditioned on Z(t) = z(t), admits

pa(z(t)) := E

[
Za(t+ 1)

∣∣∣∣Z(t) = z(t)

]
=
ya(t)fa +

∑M
b=1,b6=a (µbayb(t)fb − µabya(t)fa)∑M

b=1 yb(t)fb
.

Then, the WF dynamics, specified by the transition probability

P
(
z(t+ 1)

∣∣∣z(t)
)

= N !

M∏
a=1

(
pa(z(t))

)Nza(t+1)

(Nza(t+ 1))!
,

simply results from performing random multinomial sampling (of N individuals) with these mean frequencies.
Further, we recall the assumption that µab = µdab , with dab the Hamming distance between genotypes a and b, and

the additive model for genotype fitness, such that the selection coefficient of genotype a admits

ha = fa − 1 =

L∑
j=1

gaj sj . (S2)

We may then write

pa(z(t)) =

(1 + ha) ya(t) +
M∑
b=1

µdab ((1 + hb) yb(t)− (1 + ha) ya(t))

M∑
b=1

(1 + hb) yb(t)

. (S3)

We work under the assumption that the population size N is large, and that as N →∞,

si =
s̄i
N

+O

(
1

N2

)
, µ =

µ̄

N
+O

( 1

N2

)
, r =

r̄

N
+O

( 1

N2

)
, (S4)

and consequently

ha =
h̄a
N

+O
( 1

N2

)
, (S5)

where r̄, h̄a, s̄i and µ̄ are constants that are independent of N .

1.2 Conditional moment expansions

Here we present large-N expansions for a generalized multi-locus model, considering the joint effects of selection,
mutation, temporal sampling and recombination. Specifically, we will derive expansions for

pa(z(t),∆t) := E

[
Za (t+ ∆t)

∣∣∣∣Z(t) = z(t)

]
, Var

(
Za (t+ ∆t)

∣∣∣∣Z(t)

)
, Covar

(
Za (t+ ∆t) , Zb (t+ ∆t)

∣∣∣∣Z(t)

)
.

(S6)

Before presenting these results, given below in (S10), (S14), and (S15) respectively, we require some preliminary
expansions that apply for ∆t = 1.
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1.2.1 Preliminary expansions for ∆t = 1

We start with an expansion for pa(z(t)) ≡ pa(z(t), 1). From (S4), note that

ya(t) = za(t)− r(L− 1)
(
za(t)− ψa(z(t))

)
+O

(
1

N2

)
= za(t) +O

(
1

N

)
.

Applying this in (S3), together with (S4) and (S5), it leads after some basic algebra to

pa(z(t)) = za(t)

(
1 + ha −

M∑
b=1

hbzb(t)

)
+ µ

−Lza(t) +

M∑
b=1,dab=1

zb(t)

− r(L− 1)
(
za(t)− ψa(z(t))

)
+O

(
1

N2

)

= za(t) +O

(
1

N

)
. (S7)

The following expansions also hold:

E

[
Z2
a(t+ 1)

∣∣∣∣Z(t) = z(t)

]
= z2

a(t) +O

(
1

N

)
(S8)

E

[
Za(t+ 1)Zb(t+ 1)

∣∣∣∣Z(t) = z(t)

]
= za(t)zb(t) +O

(
1

N

)
Var

[
Za(t+ 1)

∣∣∣∣Z(t) = z(t)

]
=
za(t)(1− za(t))

N
+O

(
1

N2

)
Var

[
Za(t+ 1)Zb(t+ 1)

∣∣∣∣Z(t) = z(t)

]
= O

(
1

N

)
.

These are obtained by computing the conditional moment generating function,

M(w, z(t)) = E

[
exp

(
wTZ(t+ 1)

)∣∣∣∣Z(t) = z(t)

]

=

(
M∑
a=1

pa(z(t)) exp
(wa
N

))N
,

where w = (w1, . . . , wM ), evaluating relevant derivatives at zero in the standard way, and taking N large using (S7).

1.2.2 Main derivations for arbitrary ∆t

We first present an expansion for pa(z(t),∆t) in (S6). This is obtained by applying the law of total expectation and
the Markov property of the WF process, giving

pa(z(t),∆t) = E

[
E

[
Za (t+ ∆t)

∣∣∣∣Z (t+ ∆t− 1)

]∣∣∣∣Z(t) = z(t)

]
where the innermost conditional expectation is recognized as pa(z(t+ ∆t− 1)). Hence, using the first line of (S7), we
get

pa(z(t),∆t) = pa(z(t),∆t− 1) (1 + ha) + µ

−Lpa(z(t),∆t− 1) +

M∑
b=1,dab=1

pb(z(t),∆t− 1)

 (S9)

−
M∑
b=1

hbE

[
Za (t+ ∆t− 1)Zb (t+ ∆t− 1)

∣∣∣∣Z(t) = z(t)

]
− r(L− 1)

(
pa(z(t),∆t− 1)− E

[
ψa (Z(t+ ∆t− 1))

∣∣∣∣Z(t) = z(t)

])
+O

(
1

N2

)
.

For the remaining expectations, repeated application of the law of total expectation, together with (S8) and (S1),
leads to:

E

[
Za (t+ ∆t− 1)Zb (t+ ∆t− 1)

∣∣∣∣Z(t) = z(t)

]
= za(t)zb(t) +O

(
1

N

)
E

[
ψa (Z(t+ ∆t− 1))

∣∣∣∣Z(t) = z(t)

]
= ψa(z(t)) +O

(
1

N

)
.
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Hence, plugging these into (S9), we have expressed pa(z(t),∆t) in terms of pa(z(t),∆t − 1). This recursion may be
iterated ∆t times, yielding the desired expansion:

pa(z(t),∆t) (S10)

= za(t) + ∆t

za(t)

(
ha −

M∑
b=1

hbzb(t)

)
+ µ

−Lza(t) +

M∑
b=1,dab=1

zb(t)

− r(L− 1)
(
za(t)− ψa (z(t))

)+O

(
1

N2

)
.

Now consider the variance and covariance terms in (S6). For the variance term, using the law of total variance and
the Markov property of the WF process, we have

Var

(
Za (t+ ∆t)

∣∣∣∣Z(t) = z(t)

)
= E

[
Var

(
Za (t+ ∆t)

∣∣∣∣Z (t+ ∆t− 1)

)∣∣∣∣Z(t) = z(t)

]
+ Var

(
E

[
Za (t+ ∆t)

∣∣∣∣Z (t+ ∆t− 1)

]∣∣∣∣Z(t) = z(t)

)
. (S11)

The first term admits

E

[
Var

(
Za (t+ ∆t)

∣∣∣∣Z (t+ ∆t− 1)

)∣∣∣∣Z(t) = z(t)

]
= E

[
Z(t+ ∆t− 1)(1−Z(t+ ∆t− 1))

N

∣∣∣∣Z(t) = z(t)

]
+O

(
1

N2

)
=
za(t)(1− za(t))

N
+O

(
1

N2

)
(S12)

where the first line follows from (S8), the second line from repeated application of the law of total expectation.
The second term admits

Var

(
E

[
Za (t+ ∆t)

∣∣∣∣Z (t+ ∆t− 1)

]∣∣∣∣Z(t) = z(t)

)
= Var

(
Za(t+ ∆t− 1)

∣∣∣∣Z(t) = z(t)

)
+O

(
1

N2

)
(S13)

which follows from the first line in (S7), recalling again (S4), and using the fact that Var (
∑n
i=1 aiXi) =∑n

i=1 a
2
iVar (Xi) + 2

∑
1≤i≤j≤n aiajCov(Xi, Xj) for arbitrary random variables {Xi}ni=1.

Substituting (S12) and (S13) into (S11), and iterating, we arrive at the desired expansion

Var

(
Za (t+ ∆t)

∣∣∣∣Z(t) = z(t)

)
= ∆t

za(t)(1− za(t))

N
+O

(
1

N2

)
. (S14)

For the covariance term in (S6), a similar procedure is applied. For a 6= b, this produces

Covar

(
Za (t+ ∆t) , Zb (t+ ∆t)

∣∣∣∣Z(t) = z(t)

)
= −∆t

za(t)zb(t)

N
+O

(
1

N2

)
. (S15)

1.3 Genotype-level path integral

Here, making use of the moment expansions just derived, we present a diffusion approximation and path integral
expression for the stochastic genotype frequency dynamics under our generalized WF model setting. We start by
recalling some standard concepts from diffusion process theory, which provides a continuous-time continuous-frequency
approximation to the discrete-time discrete-frequency WF process. In our setting, this approximation is valid under
the large-N parameter scalings (S4) and (S5), and corresponds to the continuous process

Ž(τ) =
(
Ž1(τ), . . . , ŽM (τ)

)
:= Z(bNτc), τ ≥ 0 (S16)

taken in the limit N → ∞, where b·c denotes the floor function. The variable τ is a continuous time variable with
units of N generations, with one generation in discrete time (i.e., from t to t+ 1) thus taking

δτ =
1

N
(S17)

continuous time units. The diffusion process is described by the probability density function φ, the solution to

∂φ

∂τ
=

[
−

M∑
a=1

∂

∂ža
d̄a(ž(τ)) +

M∑
a=1

M∑
b=1

∂

∂ža

∂

∂žb
C̄ab(ž(τ))

]
φ. (S18)
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This is fully determined by the drift vector d̄(ž(τ)), which describes the rate of expected changes in genotype frequencies
at time τ (see Eq. 4.99 of Risken[7]), and the diffusion matrix C̄(ž(τ)), which describes the scaled covariance of the
genotype frequency changes (see equation 4.100 of Risken[7]).

Under our general model setting, where we assume genotype frequencies are observed at generations t and t + ∆t
with no observations in-between, the drift vector has ath entry

d̄a(ž(τ)) = lim
δτ∆t→0

1

δτ∆t
E

[(
Ža (τ + δτ∆t)− Ža(τ)

)∣∣∣∣Ž(τ) = (ž1(τ), . . . , žM (τ))

]

= lim
N→∞

N

ža(τ)

(
ha −

M∑
b=1

hbžb(τ)

)
+ µ

−Lža(τ) +

M∑
b=1,dab=1

žb(τ)

− r(L− 1)
(
ža(τ)− ψa (ž(τ))

)
= ža(τ)

(
h̄a −

M∑
b=1

h̄bžb(τ)

)
+ µ̄

−Lža(τ) +

M∑
b=1,dab=1

žb(τ)

− r̄(L− 1)
(
ža(τ)− ψa (ž(τ))

)
,

where the second line follows from (S10), (S16) and (S17), while the diffusion matrix has (a, b)th entry

C̄ab(ž(τ)) =
1

2
lim

δτ∆t→0

1

δτ∆t
E

[((
Ža (τ + δτ∆t)− Ža(τ)

)) ((
Žb (τ + δτ∆t)− Žb(τ)

))∣∣∣∣Ž(τ) = (ž1(τ), . . . , žM (τ))

]
=

1

2
lim

δτ∆t→0

1

δτ∆t
Covar

(
Ža (τ + δτ∆t) , Žb (τ + δτ∆t)

∣∣∣∣Ž(τ) = (ž1(τ), . . . , žM (τ))

)
=

1

2

{
ža(τ)(1− ža(τ)) a = b

−ža(τ)žb(τ) a 6= b
,

following from (S14) and (S15).
The path integral approach (see equation 4.109 of Risken[7]) approximates the transition density of a diffusion process

over a small time period. Applying this approach to the process described by (S18), for small δτ∆t (equivalently large
N
∆t ), we obtain for the transition probability density over ∆t generations,

φ(ž(τ + δτ∆t)|ž(τ), N, µ,h)

≈
exp

(
− 1

4δτ∆t

(
ž(τ + δτ∆t)− ž(τ)− d̄(ž(τ))δτ∆t

)T
C̄(ž(τ))−1

(
ž(τ + δτ∆t)− ž(τ)− d̄(ž(τ))δτ∆t

))
(4πδτ∆t)M/2

√
det(C̄(ž(τ)))

. (S19)

Note that here we have shown the explicit dependence on N , µ and h. From this result, and recalling (S17), the
transition probability from time tk to tk+1 of the original discrete-time discrete-frequency WF process can (for large
N
∆t ) be approximated by

P (z(tk+1)|z(tk), N, µ,h)

≈ φ(z(tk+1)|z(tk), N, µ,h)dz(tk+1)

=

(
N

2π∆tk

)M/2
dz(tk+1)√
detC(z(tk))

× exp

(
− N

2∆tk

M∑
a=1

M∑
b=1

[
za(tk+1)− za(tk)− da(z(tk))∆tk

] (
C−1(z(tk))

)
ab

[
zb(tk+1)− zb(tk)− db(z(tk))∆tk

])
,

where ∆tk = tk+1 − tk, the dz(tk+1) =
∏M
a=1 dza(tk+1) represent small frequency differences accounting for the

quantization of the continuous genotype frequency space, and where we have defined da(z(tk)) := d̄a(z(tk))
N and

(C(z(tk)))ab := 2(C̄(z(tk)))ab. (S20)

The path integral expression for the probability of observing a trajectory of genotype frequencies
(z(t1), z(t2), . . . ,z(tK)) is then given by

P
(

(z(tk))
K
k=1 |z(t0), N, µ,h

)
=

K−1∏
k=0

P (z(tk+1)|z(tk), N, µ,h)

≈

(
K−1∏
k=0

[
1√

detC(z(tk))

(
N

2π∆tk

)M/2

dz(tk+1)

])
exp

(
−N

2
S
(

(z(tk))
K
k=0

))
(S21)

9



where

S
(

(z(tk))
K
k=0

)
=

K−1∑
k=0

1

∆tk

M∑
a=1

M∑
b=1

[za(tk+1)− za(tk)−∆tkda(z(tk))]
(
C−1(z(tk))

)
ab

[zb(tk+1)− zb(tk)−∆tkdb(z(tk))] .

1.4 Mutant allele-level path integral

Based on the genotype transition probability density (S19), we now provide an approximation for the mutant allele
transition probability density. Let x(t) = (x1(t), . . . , xL(t)), for which

xi(t) =

M∑
a=1

gai za(t) (S22)

is the mutant frequency at locus i during generation t. Also, define the random mutant allele frequency vector
X(t) = (X1(t), . . . , XL(t)), related to the random genotype frequency vector by

Xi(t) =

M∑
a=1

gai Za(t).

The observed frequency vector x(t) is thus a realization of this random vector. The continuous process which charac-
terizes the mutant allele frequencies is

X̌(τ) =
(
X̌1(τ), . . . , X̌L(τ)

)
:= X(bNτc), τ ≥ 0

taken as N →∞, which satisfies

X̌i(τ) =

M∑
a=1

gai Ža(τ).

This allele frequency process is a diffusion process, whose probability density evolution is described by a solution to

∂φ

∂τ
=

− L∑
i=1

∂

∂x̌i
di(x̌(τ)) +

L∑
i=1

L∑
j=1

∂

∂x̌i

∂

∂x̌j
Cij(x̌(τ))

φ, (S23)

again fully characterized by the drift vector d(x̌(τ)) and diffusion matrix C(x̌(τ)). (Note that the drift and the
diffusion equations given in the Methods section of the main text are the same as those given here; however, in the
Methods we do not introduce notation to explicitly distinguish between continuous-time and discrete-time processes,
for simplicity.)

For the genotype case, the transition probability density was approximated to have a Gaussian form (S19). As the
mutant allele frequencies are linear combinations of the genotype frequencies (S22), this implies that the transition
probability density of mutant alleles also has a Gaussian form. Therefore, the allele-level drift and diffusion terms in
(S23) are also a linear combination of the genotype drift and diffusion terms. The drift vector thus has ith entry

di(x̌(τ)) :=

M∑
a=1

gai d̄a(ž(τ)) (S24)

=

M∑
a=1

gai

ža(τ)

(
h̄a −

M∑
b=1

h̄bžb(τ)

)
+ µ̄

−Lža(τ) +

M∑
b=1,dab=1

žb(τ)

− r̄(L− 1)
(
ža(τ)− ψa (ž(τ))

)
= x̌i(τ) (1− x̌i(τ)) s̄i +

L∑
j=1,j 6=i

(x̌ij(τ)− x̌i(τ)x̌j(τ)) s̄j + µ̄(1− 2x̌i(τ)) ,

where we have defined

x̌ij(τ) := xij(bNτc), τ ≥ 0 .

This result follows by applying (S2), noting

M∑
a=1

gai g
a
j ža(τ) = x̌ij(τ),

10



and recognizing that
∑M
a=1 g

a
i (ža(τ)− ψa (ž(τ))) = 0. Establishing this latter relation, which accounts for the effect

of recombination, is non-trivial and requires algebraic development. To this end, let us first define

θcdi :=

M∑
a=1

gai Ra,cd,

which is the probability that genotypes c and d recombine to form a genotype which has a mutation at locus i. Since
the model is biallelic, the recombination event could involve allele pairs (0, 0), (0, 1), (1, 0), or (1, 1) at locus i of
genotypes c and d. We thus have

M∑
a=1

gai ψa (ž(τ)) =

M∑
a=1

gai

M∑
c=1

M∑
d=1

Ra,cdžc(τ)žd(τ)

=

M∑
c=1

M∑
d=1

θcdi žc(τ)žd(τ)

=

M∑
c=1

(
M∑
d=1

θcdi g
c
i g
d
i žc(τ)žd(τ) +

M∑
d=1

θcdi g
c
i (1− gdi )žc(τ)žd(τ)

)

+

M∑
c=1

(
M∑
d=1

θcdi (1− gci )gdi žc(τ)žd(τ) +

M∑
d=1

θcdi (1− gci )(1− gdi )žc(τ)žd(τ)

)
.

Now by noting that

θcdi g
c
i g
d
i = gci g

d
i

θcdi g
c
i (1− gdi ) =

1

2
gci (1− gdi )

θcdi (1− gci )gdi =
1

2
(1− gci )gdi

θcdi (1− gci )(1− gdi ) = 0

where the factor of 1
2 arises because there is a 50% chance that genotype c (d) with a mutant at locus i and genotype

d (c) with WT at locus i will recombine to a genotype with a mutant at locus i, we have

M∑
a=1

gai ψa (ž(τ)) =

M∑
c=1

(
M∑
d=1

gci g
d
i žc(τ)žd(τ) +

1

2

M∑
d=1

gci (1− gdi )žc(τ)žd(τ)

)

+
1

2

M∑
c=1

M∑
d=1

(1− gci )gdi žc(τ)žd(τ)

= x̌2
i (τ) +

1

2
x̌i(τ)(1− xi(τ)) +

1

2
x̌i(τ)(1− x̌i(τ))

= x̌i(τ),

thus implying that
∑M
a=1 g

a
i (ža(τ)− ψa (ž(τ))) = 0, the quoted property.

(Note that above and also in the subsequent derivations, since we are focused on the mutant allele frequency
dynamics, we adopt notation which only explicitly demonstrates dependencies on the mutant allele frequencies. It
should be recognized, however, that these dynamics also depend on the pairwise variant frequencies. We do not
explicitly show this for the sake of notational convenience.)

Now consider the diffusion matrix. This has (i, j)th entry

Cij(x̌(τ)) :=

M∑
a=1

M∑
b=1

gai g
b
jC̄ab(ž(τ))

=
1

2

M∑
a=1

gai g
a
j ža(τ)− 1

2

(
M∑
a=1

gai ža(τ)

)(
M∑
b=1

gbj žb(τ)

)

=
1

2
(x̌ij(τ)− x̌i(τ)x̌j(τ)) .

Note that if we concatenate the infinitesimal drift for all loci in vector form, it yields

d(x̌(τ)) = 2C(x̌(τ))s̄+ µ̄ (1− 2x̌(τ)) (S25)
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where 1 is the vector of ones.
As for the genotype case, Eq. 4.109 of Risken [7] may be applied, which approximates the transition probability

density of this diffusion process over ∆t generations by a Gaussian distribution, given as

φ(x̌(τ + δτ∆t)|x̌(τ)) ≈
exp

(
− 1

4δτ∆t (x̌(τ + δτ∆t)− x̌(τ)− d(x̌(τ))δτ∆t)
T

[C(x̌(τ))]
−1

(x̌(τ + δτ∆t)− x̌(τ)− d(x̌(τ))δτ∆t)
)

(4πδτ∆t)L/2
√

det(C(x̌(τ)))
.

From this result, and recalling (S17), the transition probability from time tk to tk+1 of the original discrete-time
discrete-frequency WF process can (for large N

∆tk
) be approximated by

P (x(tk+1)|x(tk)) ≈ φ(x(tk+1)|x(tk))dx(tk+1)

=

(
N

2π∆tk

)L/2
dx(tk+1)√

detC(x(tk))

× exp

− N

2∆tk

L∑
i=1

L∑
j=1

[
xi(tk+1)− xi(tk)− di(x(tk))∆tk

] (
C−1(x(tk))

)
ij

[
xj(tk+1)− xj(tk)− dj(x(tk))∆tk

]
where the dx(tk+1) =

∏L
i=1 dxi(tk+1) represents small frequency differences accounting for the quantization of the

continuous mutant allele frequency space, and we have made the replacements di(x(t)) = Ndi(x(t)) and (C(x(t)))ij =
(1/2)C(x(t))ij . The path integral expression then follows by noting that the probability of observing a trajectory of
mutant allele frequencies (x(t1),x(t2), . . . ,x(tK)) is given by

P
(

(x(tk))
K
k=1 |x(t0), N, µ, s

)
≈

(
K−1∏
k=0

1√
detC(x(tk))

(
N

2π∆tk

)L/2 L∏
i=1

dxi(tk+1)

)(
K−1∏
k=0

exp

(
−N

2
S
(

(x(tk))
K
k=0

)))
,

(S26)

where

S
(

(x(tk))
K
k=0

)
=

K−1∑
k=0

1

∆tk

L∑
i=1

L∑
j=1

[xi(tk+1)− xi(tk)−∆tkdi(x(tk))]
(
C−1(x(tk))

)
ij

[xj(tk+1)− xj(tk)−∆tkdj(x(tk))] .

The quantity S
(
(x(tk))Kk=0

)
is referred to as the “action” in physics.

1.5 The MPL estimator solution

We now present a proof of the MPL estimate, given in Eq. (11) of Methods. This is obtained as the MAP estimate of
the selection coefficients, which is the solution to

ŝ = arg max
s

L
(
s|N,µ, (x(tk))

K
k=0

)
Pprior(s),

where

L
(
s|N,µ, (x(tk))

K
k=0

)
= P

(
(x(tk))

K
k=1 |x(t0), N, µ, s

)
(S27)

=

K−1∏
k=0

P (x(tk+1)|x(tk), N, µ, s)

is the likelihood function, while (x(t0),x(t1), . . . ,x(tK)) is the observed trajectory of mutant allele frequencies.
The MAP problem is equivalent to

ŝ = arg max
s

(
log L

(
s|N,µ, (x(tk))

K
k=0

)
+ log Pprior(s)

)
. (S28)

The likelihood L
(
s|N,µ, (x(tk))

K
k=0

)
is given by (S27) and is approximated by (S26). Assuming a conjugate-prior

distribution

Pprior(s) =
1

(2πσ2)L/2
exp

(
− 1

2σ2
sTs

)
,
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we take the vector derivative of the right-hand side of (S28) with respect to s (see equation 10, Chapter 10.2.1 of
Lutkepohl[11]), equate to zero, and then solve for s. This produces the MPL estimator

ŝ = (Cint + γI)
−1

(∆x− µfl)

where

Cint =

K−1∑
k=0

∆tkC(x(tk)) ,

∆x = x(tK)− x(t0) ,

µfl = µ

K−1∑
k=0

∆tk (1− 2x(tk)) ,

where γ = 1/Nσ2, which can be viewed as a parameter that regularizes the covariance matrix prior to inversion.
The individual elements can be written as

ŝi =

L∑
j=1

[
K−1∑
k=0

∆tkC(x(tk)) + γI

]−1

ij

[
xj(tK)− xj(t0)− µ

K−1∑
k=0

∆tk
(
1− 2xj(tk)

)]
(S29)

for i = 1, . . . , L.

1.6 Equivalence of genotype- and allele-level analyses

While the MPL estimator was derived using a path integral expression for the probability of mutant allele frequency
trajectories, the WF evolutionary process is defined for genotypes. Hence, one may naturally ask whether there is
any loss in information in considering only the marginal frequency dynamics. As we now show, the answer is no.
Specifically, we show that the estimate of the selection coefficients based on genotype frequencies is equivalent to the
derived MPL estimate.

We begin by defining G as a M × L matrix with (a, j)th entry Gaj = gaj . Let h = (h1, h2, . . . , hM ) denote the
column vector of genotype selection coefficients, which relates to the mutant allele selection coefficients via

h = Gs. (S30)

Given the observed genotype frequencies (z(t0), z(t1), . . . ,z(tK)), the MAP estimator of the selection coefficients
admits

ŝ = arg max
s

(
log L

(
s|µ,N, (z(tk))

K
k=0

)
+ log Pprior(s)

)
,

where the likelihood function is given as

L
(
s|N,µ, (z(tk))

K
k=0

)
= P

(
(z(tk))

K
k=1 |z(t0), N, µ,h

)
.

The right-hand side is approximated by (S21). Using (S30), in addition, gives the likelihood of the mutant allele
selection coefficients s for an observed genotype frequency path and parameters N , µ. Differentiating the resulting
expression with respect to s and equating to zero leads to

0 =

K−1∑
k=0

(
GTz(tk+1)−GTz(tk)−GTC(z(tk))Gs− µGTEz(tk)− rL

(
GTz(tk)−GTψ (z(tk))

) )
+

1

Nσ2
s, (S31)

where ψ (z(tk)) = {ψa (z(tk))}Ma=1 and C(z(tk)) is the genotype covariance matrix as given by (S20), i.e., with elements

Cab(z(tk)) =

{
za(tk)(1− za(tk)) a = b

−za(tk)zb(tk) a 6= b,

while matrix E has elements

Eab =


−L a = b

0 dab > 1

1 dab = 1.
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Noting that the relation between allele and genotype frequencies (S22) can be expressed in vector form as x(tk) =
GTz(tk), and that C(x(tk)) = GTC(z(tk))G and GTψ (z(tk)) = x(tk), we can solve (S31) to obtain the MAP estimate
of the allele selection coefficients

ŝ =

[
K−1∑
k=0

∆tkC(x(tk)) + γI

]−1 [
x(tK)− x(t0)− µ

K−1∑
k=0

∆tk (1− 2x(tk))

]
, (S32)

where γ = 1/Nσ2. This is the same as the MPL estimator (S29).
This equivalence is important. It implies that under the additive fitness model, only the single and pairwise

mutational frequencies are needed for optimally estimating the selection coefficients, and higher order information
(e.g., three-locus mutational frequencies) are irrelevant. The same equivalences can also be shown for extensions of
the MPL estimator presented in the following section. Further extensions will be explored in future work.

1.7 Extension to multiple alleles per locus and asymmetric mutation probabilities

Here we present an extension of our inference framework to consider a further generalization of the model to incorporate
multiple alleles per locus and asymmetric mutation probabilities. The same notation and definitions introduced in
Section 1 will also be used, unless stated otherwise, but will be interpreted in terms of the extended model. For
example, Ž(τ) was introduced in (S16) to refer to the binary genotype continuous process with symmetric mutation
probabilities. This notation will also be used here, but it will now refer to the non-binary genotype continuous process
with asymmetric mutation probabilities. We first describe the model in detail.

We assume there are ` alleles per locus, thus resulting in M = `L genotypes, with the multi-allelic sequence for
genotype a denoted by ga = (ga1 , g

a
2 , . . . , g

a
L), where gai is the allele at locus i. Nucleotide sequences, for example,

will have gai ∈ {A,C,G,T}. For convenience, we denote each allele with an integer index, and consider the fitness of
each genotype with respect to a reference sequence comprising of allele ` at each locus, i.e., the reference sequence
is a sequence of `s. For example, if ` = 4 and L = 3, then the reference sequence is represented by (4, 4, 4). We
assume, once again, an additive model of fitness, and that the reference genotype has a fitness of one. Under these
assumptions, the selection coefficient for genotype a is given by

ha = fa − 1 =

L∑
i=1

`−1∑
α=1

δ(gai , α)si,α ,

where si,α is the selection coefficient of allele α at locus i, and where δ(·, ·) is the Kronecker-delta function,

δ(x, y) :=

{
1 x = y

0 otherwise.

The assumptions above imply that si,` = 0 for all i = 1, . . . , L.
The allele frequency vector, describing the frequency of all alleles except (the reference) allele one, is given by

x(t) = (x1,1(t), . . . , x1,`−1(t), . . . , xL,1(t), . . . , xL,`−1(t)), where xi,α(t) denotes the observed frequency of allele α at
locus i during generation t, and is related to the genotype frequencies by

xi,α(t) =

M∑
a=1

δ(gai , α)za(t). (S33)

Finally, we denote µαβ as the mutation probability per generation from allele α to allele β and µab as the mutation
probability per generation from genotype a to genotype b. These are related by

µab =

L∏
i=1

∑̀
α=1

∑̀
β=1

µαβδ(g
a
i , α)δ(gbi , β)

 .

Given this extended model, the MAP estimate of the selection coefficients is the solution to

ŝ = arg max
s

L
(
s|µ, N, (x(tk))Tk=0

)
Pprior(s), (S34)

where

L
(
s|µ, N, (x(tk))Tk=0

)
= P

(
(x(tk))Kk=1|x(t0), N,µ, s

)
(S35)

=

K−1∏
k=0

P (x(tk+1)|x(tk), N,µ, s)
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is the likelihood of the selection coefficients s = (s1,1, . . . , s1,`−1, . . . , sL,1, . . . , sL,`−1) and Pprior(s) is their prior
distribution.

As with the simpler biallelic and symmetric mutation probability scenario, the main challenge in solving (S34) is
that it requires computing the likelihood (S35), which is complicated. This is simplified as before, by adopting the
path integral approach outlined in Section 1; but now extending the analysis to account for multiple alleles per locus
and asymmetric mutation probabilities. Other than these differences, we may follow the same approach, starting by
giving asymptotic moment expansions. In the following, since much of the development involves the same algebraic
steps as before, albeit with additional notational record-keeping, we present mainly a summary of the key formulas
here. We do, however, provide extensive details for the more involved derivations; namely, those of the drift and
covariance terms for the allele-level dynamics.

By direct analogy to (S4) and (S5), we will work under the assumption that N is large, and that as N →∞,

si,α =
s̄i,α
N

+O
( 1

N2

)
, ha =

h̄a
N

+O
( 1

N2

)
, µβα =

µ̄βα
N

+O
( 1

N2

)
, µab =

µ̄ab
N

+O
( 1

N2

)
, r =

r̄

N
+O

( 1

N2

)
(S36)

where s̄i,α, h̄a, µ̄βα, µ̄ab and r̄ are constants independent of N .

1.7.1 Conditional moment expansions

The mean frequency of genotype a at generation t+ 1, conditioned on Z(t) = z(t), admits

pa(z(t)) := E

[
Za(t+ 1)

∣∣∣∣Z(t) = z(t)

]
(S37)

=

(1 + ha)ya(t) +
M∑
b=1

(µba(1 + hb)yb(t)− µab(1 + ha)ya(t))

M∑
b=1

(1 + hb)yb(t)

,

where recall that

ya(t) = (1− r)Lza(t) +
(
1− (1− r)L

)
ψa(z(t)).

Utilizing (S37) along with (S36), and applying a similar proof to that described in Section 1.2, the mean frequency of
genotype a at generation t+ ∆t, conditioned on Z(t) = z(t), then admits

pa(z(t),∆t) = za(t) + ∆t

(
za(t)

(
ha −

M∑
b=1

hbzb(t)

)
(S38)

+

M∑
b=1,dab=1

(µbazb(t)− µabza(t))− r(L− 1) (za(t)− ψa(z(t)))

+O

(
1

N2

)

= za(t) +O

(
1

N2

)
,

where dab here denotes the number of loci for which the allele identity at genotypes a and b differ, i.e.,

dab :=

L∑
i=1

(
1− δ(gai , gbi )

)
.

The corresponding expressions for the variance and covariance of the frequency of genotype a at generation t + ∆t,
conditioned on Z(t) = z(t) are obtained analogously to (S14) and (S15) as

Var

(
Za (t+ ∆t)

∣∣∣∣Z(t) = z(t)

)
= ∆t

za(t)(1− za(t))

N
+O

(
1

N2

)
, (S39)

and

Covar

(
Za (t+ ∆t) , Zb (t+ ∆t)

∣∣∣∣Z(t) = z(t)

)
= −∆t

za(t)zb(t)

N
+O

(
1

N2

)
. (S40)
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1.7.2 Path integral expression for the likelihood function

Based on the above conditional moment expansions, we can derive a path integral expression for the likelihood function
(S35). Starting by considering genotype evolution, the drift vector and diffusion matrix are given respectively by

d̄a(ž(τ),∆t) = lim
δτ∆t→0

1

δτ∆t
E

[
Ža (τ + δτ∆t)− Ža(τ)

∣∣∣∣Ž(τ) = (ž1(τ), . . . , žM (τ))

]
(S41)

= ža(τ)

(
h̄a −

M∑
b=1

h̄bžb(τ)

)
+

M∑
b=1,dab=1

(µ̄bažb(τ)− µ̄abža(τ))− r̄(L− 1) (ža(τ)− ψa (ž(τ)))

and

C̄ab(ž(τ),∆t) =
1

2

{
ža(τ)(1− ža(τ)) a = b

−ža(τ)žb(τ) a 6= b
, (S42)

which follow from (S38), (S39), (S40), and by adopting the procedure described in Section 1.3. From these results,
and again following the procedure in Section 1.3, the conditional probability of observing a trajectory of genotype
frequencies (z(t1), z(t2), . . . ,z(tK)) is obtained as

P
(
(z(tk))Kk=1|z(t0)

)
=

K−1∏
k=0

P (z(tk+1)|z(tk))

≈

(
K−1∏
k=0

[
1√

det C̄(z(tk))

(
N

4π∆tk

)M/2 M∏
a=1

dza(tk+1)

])
exp

(
−N

4
S
(
(z(tk))Kk=0)

))
where ∆tk = tk+1 − tk and

S
(
(z(tk))Kk=0

)
=

K−1∑
k=0

1

∆tk

M∑
a=1

M∑
b=1

[
za(tk+1)− za(tk)− ∆tkd̄a(z(tk))

N

]
×
(
C̄−1(z(tk))

)
ab

[
zb(tk+1)− zb(tk)− ∆tkd̄b(z(tk))

N

]
.

In this last equation we have dropped the second argument of the drift vector and diffusion matrix, as both quantities
turn out to be independent of ∆t, as seen from (S41) and (S42).

Now turn to mutant allele evolution. From the linearity of expectation and the genotype-to-allele mapping (S33),
the mean frequency of allele α at locus i during time τ + δτ∆t, conditioned on X̌(τ) = x̌(τ), is given by

M∑
a=1

δ(gai , α)ža(τ) + di,α(x̌(τ))δτ∆t = x̌i,α(τ) + di,v(x̌(τ))δτ∆t

where

di,α(x̌(τ)) =

M∑
a=1

δ(gai , α) d̄a(ž(τ),∆t)

=

M∑
a=1

δ(gai , α)

ža(τ)

(
h̄a −

M∑
b=1

h̄bžb(τ)

)
+

M∑
b=1,dab=1

(µ̄bažb(τ)− µ̄abža(τ))− r̄(L− 1) (ža(τ)− ψa (ž(τ)))


= I1 + I2 + I3

with the second line following from (S41). For I1, we have

I1 =

M∑
a=1

δ(gai , α)ža(τ)

(
h̄a −

M∑
b=1

h̄bžb(τ)

)

=

M∑
a=1

δ(gai , α)ža(τ)

L∑
j=1

`−1∑
β=1

δ(gaj , β)s̄j,β −
M∑
a=1

δ(gai , α)ža(τ)

M∑
b=1

L∑
j=1

`−1∑
β=1

δ(gbj , β)s̄j,β žb(τ)

=

L∑
j=1

`−1∑
β=1

(x̌ij,αβ(τ)− x̌i,α(τ)x̌j,β(τ)) s̄j,β
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where x̌ij,αβ(τ) denotes the frequency of allele α and β occurring respectively at loci i and j during time τ , and given
by

x̌ij,αβ(τ) =

M∑
a=1

δ(gai , α)δ(gaj , β)ža(τ).

For I2, we have

I2 =

M∑
a=1

δ(gai , α)

M∑
b=1,dab=1

(µ̄bažb(τ)− µ̄abža(τ))

=

M∑
a=1

δ(gai , α)

M∑
b=1,dab=1

(
δ(gbi , α) + 1− δ(gbi , α)

)
(µ̄bažb(τ)− µ̄abža(τ))

= I2a + I2b

where

I2a =

M∑
a=1

M∑
b=1,dab=1

δ(gai , α)δ(gbi , α) (µ̄bažb(τ)− µ̄abža(τ))

I2b =

M∑
a=1

M∑
b=1,dab=1

δ(gai , α)
(
1− δ(gbi , α)

)
(µ̄bažb(τ)− µ̄abža(τ)) .

Consider now I2a, where we observe that (i) δ(gai , α)δ(gbi , α) is non-zero only when genotypes a and b both have allele

α at locus i, while (ii) the summation
M∑

b=1,dab=1

is over all genotypes b which have a different allele from genotype a at

only one locus. These two observations imply that δ(gai , α)δ(gbi , α) is non-zero, for b = 1, . . . ,M, with dab = 1, only if
a and b have a different allele at a single locus, but where the position of this locus is different from i. To illustrate
this, consider a simple example with L = 2 and ` = 3, in which case

g1 =

(
1
1

)
, g2 =

(
1
2

)
, g3 =

(
1
3

)
,

g4 =

(
2
1

)
, g5 =

(
2
2

)
, g6 =

(
2
3

)
,

g7 =

(
3
1

)
, g8 =

(
3
2

)
, g9 =

(
3
3

)
.

Then if i = 1 and α = 1, the only genotype-pairs (a, b) which result in a non-zero δ(gai , α)δ(gbi , α) (subject to the
condition dab = 1) are (1, 2), (2, 1), (1, 3), (3, 1), (2, 3) and (3, 2), as these genotype-pairs differ only at the second
locus, while having allele one at locus i = 1.

Observe that every genotype-pair which result in a non-zero δ(gai , α)δ(gbi , α) (subject to the condition dab = 1) occur
in conjugates, i.e., if (1, 2) is such a genotype-pair, then so is (2, 1). This implies that I2a = 0, as for every genotype
pair (a, b) resulting in a non-zero δ(gai , α)δ(gbi , α)µ̄bažb(τ), there always exist one other conjugate pair (b, a) which
cancels this term through the −δ(gai , α)δ(gbi , α)µ̄abža(τ) term.

Consider now I2b, and observe that the δ(gai , α)
(
1− δ(gbi , α)

)
term is non-zero only when genotype a, but not

genotype b, has allele α at locus i. Combining the above, we can thus write I2 as

I2 = I2b =
∑̀

β=1,β 6=α

(µ̄βαx̌i,β(τ)− µ̄αβ x̌i,α(τ))

=
∑̀
β=1

(µ̄βαx̌i,β(τ)− µ̄αβ x̌i,α(τ))

=

`−1∑
β=1

µ̄βαx̌i,β(τ) + µ̄`α

1−
`−1∑
β=1

x̌i,β(τ)

− ∑̀
β=1

µ̄αβ x̌i,α(τ)

= µ̄`α +

`−1∑
β=1

(µ̄βα − µ̄`α) x̌i,β(τ)− x̌i,α(τ)
∑̀
β=1

µ̄αβ .
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In the third line above we have used the fact that the frequency of the reference allele is one minus the sum of the
frequency of all other alleles.

Finally, we have

I3 = −r̄(L− 1)

M∑
a=1

δ(gai , α) (ža(τ)− ψa (ž(τ))) .

Similar to the biallelic case, we define

θcdi,α :=

M∑
a=1

δ(gai , α)Ra,cd

where θcdi,α is the probability that genotypes c and d recombine to form a genotype which has an allele α at locus i.
Next we split this summation into four summations, one for each of the four possible recombination scenarios. Namely,
when both genotypes c and d have allele α at locus i, when both do not have allele α at locus i and when only of the
genotypes has allele α at locus i. We thus have

M∑
a=1

δ(gai , α)ψa (ž(τ)) =

M∑
a=1

δ(gai , α)

M∑
c=1

M∑
d=1

Ra,cdžc(τ)žd(τ)

=

M∑
c=1

M∑
d=1

θcdi,αžc(τ)žd(τ)

=

M∑
c=1

(
M∑
d=1

θcdi δ(g
c
i , α)δ(gdi , α)žc(τ)žd(τ) +

M∑
d=1

θcdi δ(g
c
i , α)(1− δ(gdi , α))žc(τ)žd(τ)

)

+

M∑
c=1

(
M∑
d=1

θcdi (1− δ(gci , α))δ(gdi , α)žc(τ)žd(τ) +

M∑
d=1

θcdi (1− δ(gci , α))(1− δ(gdi , α))žc(τ)žd(τ)

)
.

Moreover, noting that

θcdi δ(g
c
i , α)δ(gdi , α) = δ(gci , α)δ(gdi , α)

θcdi δ(g
c
i , α)(1− δ(gdi , α)) =

1

2
δ(gci , α)(1− δ(gdi , α))

θcdi (1− δ(gci , α))δ(gdi , α) =
1

2
(1− δ(gci , α))δ(gdi , α)

θcdi (1− δ(gci , α))(1− δ(gdi , α)) = 0

where the factor of 1
2 arises because there is a 50% chance that genotype c (d) with allele v at locus i and genotype d

(c) which does not have allele α at locus i will recombine to a genotype with allele α at locus i, we have

M∑
a=1

δ(gai , α)ψa (ž(τ)) =

M∑
c=1

(
M∑
d=1

δ(gci , α)δ(gdi , α)žc(τ)žd(τ) +
1

2

M∑
d=1

δ(gci , α)(1− δ(gdi , α))žc(τ)žd(τ)

)

+
1

2

M∑
c=1

M∑
d=1

(1− δ(gci , α))δ(gdi , α)žc(τ)žd(τ)

= x̌2
i,α(τ) +

1

2
x̌i,α(τ)(1− x̌i,α(τ)) +

1

2
x̌i,α(τ)(1− x̌i,α(τ))

= x̌i,α(τ)

thus implying that
∑M
a=1 δ(g

a
i , α) (ža(τ)− ψa (ž(τ))) = 0 and hence I3 = 0.

The final expression for the drift vector is thus

di,α(x̌(τ),∆t) =

L∑
j=1

`−1∑
β=1

(x̌ij,αβ(τ)− x̌i,α(τ)x̌j,β(τ)) s̄j,β + µ̄`α +

`−1∑
β=1

(µ̄βα − µ̄`α) x̌i,β(τ)− x̌i,α(τ)
∑̀
β=1

µ̄αβ . (S43)

As expected, we observe that when there are two alleles, the mutation probability is symmetric and the reference allele
is the WT, the expression in (S43) reduces to the expression in (S24).
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We now move on to the diffusion matrix. This can be partitioned into L2 blocks each of size (`− 1)× (`− 1), where
the (i, j)th block has (α, β)th entry

Cij,αβ(x̌(τ)) =

M∑
a=1

M∑
b=1

δ(gai , α)δ(gbj , β)C̄ab(ž(τ))

=
1

2

M∑
a=1

δ(gai , α)δ(gaj , β)ža(τ)(1− ža(τ))− 1

2

M∑
a=1

M∑
b=1,b 6=a

δ(gai , α)δ(gbi , β)ža(τ)žb(τ)

=
1

2

M∑
a=1

δ(gai , α)δ(gaj , β)ža(τ)− 1

2

(
M∑
a=1

δ(gai , α)ža(τ)

)(
M∑
b=1

δ(gbi , β)žb(τ)

)

=
1

2
(x̌ij,αβ(τ)− x̌i,α(τ)x̌j,β(τ)) .

Following along the lines of the proof in Section 1.4, the probability of observing mutant allele frequencies
(x(t1),x(t2), . . . ,x(tK)), and hence the likelihood function (S35), is approximated by the path integral

L
(
s|µ, N, (x(tk))Kk=0

)
≈

[
K−1∏
k=0

1√
detC(x(tk))

(
N

2π∆tk

)L(`−1)/2

dx(tk+1)

]
exp

(
−N

2
S
(
(x(tk))Kk=0)

))
, (S44)

where dx(tk+1) =
∏L
i=1

∏`−1
α=1 dxi,α(tk+1) and

S
(
(x(tk))Kk=0

)
=
∑

1

[xi,α(tk+1)− xi,α(tk)−∆tkdi,α(x(tk))]
(
C−1(x(tk))

)
ij,αβ

[xj,β(tk+1)− xj,β(tk)−∆tkdj,β(x(tk))]

∆tk
.

Here we have adopted the shorthand notation
∑

1 =
∑K−1
k=0

∑L
i=1

∑`−1
α=1

∑L
j=1

∑`−1
β=1, while (X)ij,αβ indicates the

(α, β)th entry of the (i, j)th block, with each block having dimension (`− 1)× (`− 1). Moreover, we have

di,α(x(tk)) =

L∑
j=1

`−1∑
β=1

(xij,αβ(tk)− xi,α(tk)xj,β(tk)) sj,β + µ`α +

`−1∑
β=1

(µβα − µ`α)xi,β(tk)− xi,α(tk)
∑̀
β=1

µαβ

and

Cij,αβ(x(tk)) = xij,αβ(tk)− xi,α(tk)xj,β(tk).

1.7.3 The MPL estimator solution

Substituting the likelihood approximation (S44) and the prior

Pprior(s) =
1

(2πσ2)L(`−1)/2
exp

(
− 1

2σ2
sTs

)
into the equivalent MAP problem

ŝ = arg max
s

(
log L

(
s|µ, N, (x(tk))Kk=0

)
+ log Pprior(s)

)
,

we take the vector derivative with respect to s and equate to zero. This yields the MPL estimate

ŝi,α =

L∑
j=1

`−1∑
β=1

[
K−1∑
k=0

∆tkC(x(tk)) + γI

]−1

ij,αβ

×

[
xj,β(tK)− xj,β(t0)−

K∑
k=1

∆tk

(
µ`α +

`−1∑
l=1

(
µlα − µ`α

)
xj,l(tk)− xj,α(tk)

∑̀
l=1

µαl

)]
(S45)

for i = 1, . . . , L and α = 1, . . . , `− 1, which is the result quoted in Eq. (12) in Methods.
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2 Data analysis

This section provides details about the synthetic data and its analysis used to obtain results presented in the paper.
Section 2.1 describes the data and analysis in Figs. 1 and 2 and Extended Data Figs. 1-4. This data in these figures
was designed to demonstrate the performance of MPL for a dynamic but generic system where linkage is pervasive.
Section 2.2 describes the data pre-processing performed to implement different methods in literature. Section 2.3
describes the data and analysis of a system designed to mimic the HIV-1 data set described in Supplementary Table
1.

2.1 Simulated data generation and performance analysis

The results in Figs. 1 and 2 and Extended Data Figs. 1-4 were obtained for a 50-locus biallelic system. We generated a
population of N = 1000 sequences, each of length L = 50, and evolved the population according to the WF model with
selection and mutation. We assumed loci to be biallelic with 0 representing the WT and 1 representing the mutant
allele. Parameters for the simulations are included in the figure captions. Scripts for generating and analyzing these
data are located in the GitHub repository.

We compared MPL with seven methods from the literature: WFABC [12], FIT [13], ApproxWF [14], LLS [15],
CLEAR [16], EandR [17], and IM [18]. We compared the accuracy of these methods by measuring the AUROC for
classification of beneficial and deleterious selection coefficients, as well as the normalized root-mean-squared error
(NRMSE) of the inferred selection coefficients,

NRMSE :=

√√√√∑L
i=1 (ŝi − si)2∑L

i=1 s
2
i

. (S46)

We also recorded the run time of all algorithms in the same computational environment. All values were averaged
over samples from 100 WF simulations with the same underlying parameters.

2.2 Implementation and data preprocessing specifications

We wrote custom codes for the FIT and IM methods, while for the remaining methods we used software implementa-
tions provided by the respective authors. Scripts used to generate the comparison results in the paper are available
at the GitHub repository.
Pre-processing : Some methods required the input sequence or allele frequency data to be modified in order to

produce reasonable results. This pre-processing was performed according to one or two rules, as indicated below. In
describing these, we define a trajectory as a set of mutant allele frequencies at consecutively sampled time points.
The start of a trajectory is marked by the first observation of a polymorphism, while the end is marked by either the
fixation or loss of the mutant allele, or by the last sampled time point. Thus, over an entire observation period, it is
possible to observe multiple “trajectories” at the same locus.

1. Pre-filtering: Trajectories were filtered such that (a) the minimum length of a trajectory was two time points and
(b) the maximum (minimum) frequency was at least 0.05 (0.95) for a trajectory that started from a frequency of
zero (one).

2. Bit-flipping: The definitions of WT and mutant were reversed at loci for which trajectories had initial frequency
greater than 0.95.

MPL and SL. MPL and its single locus variant, the independent model described in the main text, were implemented
in C++. No preprocessing of the sequence data was required for MPL and SL.
WFABC. Trajectories were converted to WFABC’s format using custom Matlab scripts and then analyzed using the
code provided at http://jjensenlab.org/software (accessed on September 16, 2017). Initial tests revealed that
we had to pre-process the raw sampled trajectories before applying the WFABC method in order to get meaningful
results. All trajectories were pre-filtered except the ones that were rendered monomorphic due to pre-filtering. Bit-
flipping was also applied. These processing steps removed spurious noisy blips from the trajectories and redefined
WT/mutant, resulting in improved performance of the WFABC method.
ApproxWF. Trajectories were converted to an input format compatible with ApproxWF using custom Matlab scripts
and then analyzed using the code provided at https://bitbucket.org/wegmannlab/approxwf/wiki/Home (commit
fcc7964 dated: 2016-10-04 accessed on September 26, 2017). All trajectories were pre-filtered as outlined above, except
the ones that were rendered monomorphic due to filtering. Bit-flipping was not used.
IM. We developed a custom MATLAB script to implement the IM method [18]. Trajectories were pre-filtered, but
not flipped. We used the filtering threshold of 0.1 (0.9) as specified by the authors of this method. The method
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was implemented according to the description given in ref. [18], which applies a simulated annealing algorithm to
estimate the selection coefficients. We used the simulated annealing algorithm implementation provided in the Global
Optimization Toolbox of MATLAB 2017a. We let the algorithm run for a maximum of 100, 000 iterations and stopped
the algorithm when the average change in value of the objective function in the previous 10, 000 iterations was less
than a tolerance value (default value of 10−8).

In all simulation runs, the optimization stopped in less than 100, 000 iterations, indicating that the algorithm had
converged. To further validate our in-house implementation of IM, we applied it to data sets generated using the system
parameters as in ref.[18] and under the same simulation setup; e.g., continuous long runs of several hundred thousand
generations. The results were qualitatively similar to those reported in ref. [18]. We found that IM’s procedure of
calling trajectories (described in ref. [18]), was sensitive to the evolutionary parameters used, e.g., population size,
mutation probability (N = 10, 000 and µ = 5 × 10−7 were used in ref. [18]), as well as to the simulation condition
of not allowing a locus to mutate after it has reached fixation (in the simulation setup of IM, a locus that reaches
fixation remains at fixation for the next 3200 generations). For the simulation results presented in this paper, where
N = 1000, µ = 10−4 and there are no restrictions on mutations at a locus reaching fixation, we had to change the
parameters of the procedure for calling trajectories so that the algorithm returned meaningful results. Using the
default parameters of ref. [18] for calling trajectories resulted in the IM method missing the start/end of trajectories.
The modified parameters are specified in Matlab scripts in the GitHub repository.
LLS. Trajectories were fed directly into the LLS code provided by the authors at https://github.com/ThomasTaus/
poolSeq. A small number of loci resulted in a “N/A” selection coefficient estimate, which occurred when the loci had
a frequency of zero or one for the vast majority of time points, and having a frequency close to zero or one for the
other (small number of) time points. These loci were excluded from the analysis.
FIT. No additional preprocessing was required. The trajectories were analyzed using custom Matlab scripts.
CLEAR. Simulation data was converted into a format readable by CLEAR using custom Python scripts. No prepro-
cessing of the data was necessary.
EandR. Simulation data was converted into a format readable by EandR using custom Python scripts. No prepro-
cessing of the data was required.

2.3 Simulated data generation and performance analysis with sampling conditions sim-
ilar to HIV-1 dataset

To test robustness to different sampling parameters, we analyzed the performance of MPL under sampling conditions
similar to the HIV-1 dataset (Supplementary Table 1), where the number of sequences ns and the time between
samples ∆t varies at each time point, and where the trajectory length T can vary across simulations. Specifically, the
number of sequences ns at each time point was drawn from a binomial distribution with n = 1000 and p = 0.0139
(Extended Data Fig. 4a). This resulted in ns values that varied between 5 and 26, with the mean equal to the average
number of sequences per time point in our data. The time between samples, ∆t, was drawn from a gamma mixture
distribution selected to match with the distribution of δt values in the data, resulting in ∆t values that varied between
2 and 131 (Extended Data Fig. 4b). Time gaps for each trajectory were rearranged so that shorter gaps appeared
at the beginning of the trajectories and larger time gaps at the end (Extended Data Fig. 4d), similar to what was
observed in the HIV-1 data (Supplementary Table 1). The length of the trajectories used for inference was also drawn
from a gamma mixture distribution resulting in trajectory lengths between 17 and 330 generations (Extended Data
Fig. 4c). The simulation parameters consisted of population size N = 1000, L = 50 loci with two alleles at each
locus (mutant and WT), 10 beneficial mutants with selection coefficients s uniformly distributed over the range [0.075,
0.125], 30 neutral mutants with s = 0, and 10 deleterious mutants with s uniformly distributed over the range [-0.125,
-0.075], mutation probability per site per generation µ = 10−4, and recombination probability per site per generation
r = 10−4. Results for the perfect sampling case are evaluated for those sites that are polymorphic in the heterogeneous
sampling case.

These simulations show that MPL readily identifies loci with beneficial selection coefficients (Extended Data Fig.
4e). Our ability to detect beneficial selection with heterogeneous sampling (i.e., imperfect sampling with parameters
chosen according to the distributions in Extended Data Fig. 4a-c) is only slightly worse than in the case with perfect
sampling, where the complete genotype distribution in the population at every generation is known. Under these
sampling conditions, deleterious selection coefficients are more difficult to identify than beneficial ones.
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