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Abstract
Epistasis refers to fitness or functional effects of mutations that depend on the sequence background in which these 
mutations arise. Epistasis is prevalent in nature, including populations of viruses, bacteria, and cancers, and can con
tribute to the evolution of drug resistance and immune escape. However, it is difficult to directly estimate epistatic 
effects from sampled observations of a population. At present, there are very few methods that can disentangle the 
effects of selection (including epistasis), mutation, recombination, genetic drift, and genetic linkage in evolving po
pulations. Here we develop a method to infer epistasis, along with the fitness effects of individual mutations, from 
observed evolutionary histories. Simulations show that we can accurately infer pairwise epistatic interactions pro
vided that there is sufficient genetic diversity in the data. Our method also allows us to identify which fitness para
meters can be reliably inferred from a particular data set and which ones are unidentifiable. Our approach therefore 
allows for the inference of more complex models of selection from time-series genetic data, while also quantifying 
uncertainty in the inferred parameters.

Key words: Bayesian inference, selection, epistasis, linkage, path integral, diffusion, time-series data, longitudinal 
data.
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Epistasis refers to fitness effect of mutant alleles that differ 
from the sum of the fitness effects of each individual mu
tant (Carlborg and Haley 2004; Phillips 2008; de Visser et al. 
2011; Lehner 2011). Epistasis therefore causes the fitness 
effect of a mutation to depend on the genetic background 
on which it arises. Theoretical and experimental studies 
have shown that epistasis can play a role in speciation 
(Wade 2002; Gavrilets 2004) and adaptation (Chou et al. 
2011; Hansen 2013), and that it is intertwined with the 
evolutionary advantages of recombination (de Visser and 
Elena 2007; Kouyos et al. 2007). Epistasis is not uncommon 
in nature, and signatures of strong epistasis have been ob
served in lab evolution and site-directed mutagenesis ex
periments (Bershtein et al. 2006; Khan et al. 2011; 
Salverda et al. 2011; Gong et al. 2013).

Epistasis makes fitness landscapes more complex, shap
ing evolution (Phillips 2008; de Visser and Krug 2014). For 
example, epistasis may make certain mutational pathways 
more difficult to traverse while others become more read
ily accessible, depending on the sequence background 

(Weinreich et al. 2005, 2006; Phillips 2008; Salverda et al. 
2011; de Visser and Krug 2014; Pedruzzi et al. 2018). A bet
ter understanding of epistasis could therefore help to char
acterize the evolutionary dynamics of novel viral strains 
capable of evading immune responses (Illingworth et al. 
2014), pathogens that develop drug resistance (Hughes 
and Andersson 2015; Zhang et al. 2020) and tumor growth 
in cancers (Yates and Campbell 2012; Wang et al. 2014), as 
well as the adaptation of populations under lab settings 
(Domínguez-García et al. 2019).

Advances in sequencing technologies over the past dec
ades have made it possible to obtain detailed, time- 
resolved population-level sequence data, enabling the 
study of evolving populations in fine detail. Examples of 
such data include those obtained from evolving popula
tions in vitro (Barrick et al. 2009), ones sampled from nat
urally-infected hosts (Murcia et al. 2012; Illingworth 2015; 
Zanini et al. 2015; Xue et al. 2017), and time-resolved global 
influenza evolutionary records (Bao et al. 2008). These 
evolving populations contain multiple polymorphic loci, 
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making the epistasis between mutant alleles a potential 
factor in their evolution.

A complicating factor in inferring epistasis from such 
time-series data is the presence of linkage effects. 
Genetic linkage can arise by chance as a consequence of 
shared inheritance, or for functional reasons due to epi
static interactions between linked loci. Linkage can be es
pecially strong when recombination is low, selection is 
strong, and novel mutations frequently appear and com
pete in a population (Desai and Fisher 2007; Neher and 
Shraiman 2009; Sniegowski and Gerrish 2010). The ability 
to distinguish the effects of epistasis from linkage due to 
chance is therefore important for the reliable inference 
of fitness from genetic time-series data.

The large majority of existing methods for inferring the 
fitness effects of mutations from genetic data ignore epis
tasis in their modeling. Hence they do not estimate epista
sis, nor do they account for epistatic effects when 
estimating the fitness advantage of an allele. Most existing 
methods are based on single-locus models which assume 
independent evolution of loci (Bollback et al. 2008; 
Malaspinas et al. 2012; Mathieson and McVean 2013; 
Feder et al. 2014; Lacerda and Seoighe 2014; Steinrücken 
et al. 2014; Foll et al. 2015; Topa et al. 2015; 
Ferrer-Admetlla et al. 2016; Gompert 2016; Schraiber 
et al. 2016; Iranmehr et al. 2017; Taus et al. 2017; Zinger 
et al. 2019), thus they are unable to directly account for 
genetic linkage or epistasis. A few methods (Illingworth 
and Mustonen 2011; Terhorst et al. 2015; Sohail et al. 
2021) have been developed that consider the joint evolu
tion of multiple loci, but these assume additive fitness 
models. Hence, while they account for genetic linkage, 
they do not consider epistasis. A notable exception are 
the methods that use an extension of the multi-locus ap
proach of Illingworth and Mustonen (2011) to account for 
epistatic interactions (Illingworth et al. 2014; Illingworth 
2015). These fit a deterministic evolutionary model based 
on observed genotype frequencies, and while presenting 
an important advance, they require the use of computa
tionally intensive numerical optimization methods.

New Approaches
Here we present a novel method that provides a closed-form, 
analytical solution for estimates of selection coefficients and 
pairwise epistatic interactions from genetic time-series data. 
Due to its analytical form, our approach is straightforward to 
implement and computationally efficient for moderate num
bers of loci. Our method is based on an extension of the mar
ginal path likelihood (MPL) framework (Sohail et al. 2021) to 
account for epistasis. We use a path integral method derived 
from statistical physics (Risken 1989) to efficiently represent 
the likelihood of an observed trajectory of single and double 
mutant allele frequencies. We then apply Bayesian theory to 
estimate the fitness parameters that best explain an observed 
evolutionary trajectory.

We model a population evolving under the Wright–Fisher 
(WF) model with mutation, selection, and recombination. 

First, we define x(t) as the vector of single and double mu
tant allele frequencies observed at generation t. For a system 
with L loci labeled by i = 1, 2, . . . , L, the first L entries of 
x(t) represent mutant allele frequencies xi(t), and entries 
from L + 1 to R = L(L + 1)/2 represent the frequencies of 
individuals in the populations with mutant alleles at loci i 
and j, denoted xij(t). Under WF dynamics the probability 
of observing a trajectory or ‘path’ (x(t1), x(t2), . . . , x(tK)) 
conditioned on x(t0) is given by

P((x(tk))K
k=1 | x(t0)) =

􏽙K−1

k=0

P(x(tk+1) | x(tk)). (1) 

We approximate the probability in (1) with a path integral. 
The first step of this approach is to approximate the WF 
process by a diffusion process (Kimura 1964; Ewens 2012; 
Tataru et al. 2015; He et al. 2017; Tataru et al. 2017). 
Under this approximation, the transition probabilities that 
appear on the right-hand side of (1) can be approximated 
by the transition probability density, ϕ, of a diffusion process 
(Durrett 2008), multiplied by a constant scaling term. In 
principle, P(x(tk+1) | x(tk)) can be approximated using nu
merical integration techniques to solve the diffusion equa
tions (Bollback et al. 2008; Malaspinas et al. 2012; 
Ferrer-Admetlla et al. 2016). Such approaches, however, 
are computationally intensive and lead to expressions that 
are difficult to treat analytically, even at the single locus le
vel. Instead, the path integral approach we take allows for 
efficient computation of (1) by discretizing the transition 
probability density for small time steps.

Taking a Gaussian prior for the selection coefficients and 
epistasis parameters and applying the maximum a poster
iori criterion, we obtain an analytical expression for the es
timates of selection coefficients and epistasis terms 
(collected into a vector ŝ) given the observed allele fre
quency trajectories (see Materials and Methods for details):

ŝ = [Cint + γI]−1 × [Δx − μ vint − r ηint]. (2) 

Here Cint is the covariance matrix of single and double mu
tant allele frequencies integrated over time, γ is a regulariza
tion parameter, and I is the identity matrix. The net change 
in single and double mutant allele frequencies over the tra
jectory is denoted by Δx. Entries of the vint and ηint vectors, 
which describe the flux in mutant allele frequencies due to 
mutation and recombination, respectively, are given by

ve(x(tk)) = 1 − 2xi(tk) 1 ≤ e ≤ L
xi(tk) + x j(tk) − 4xij(tk) L < e ≤ R,

􏼚

(3) 

and

ηe(x(tk)) = 0 1 ≤ e ≤ L
(i − j)(xij(tk) − xi(tk)x j(tk)) L < e ≤ R,

􏼚

(4) 

integrated over time. Here e 7! i for e ≤ L and e 7! (i, j) for 
L < e ≤ R. We use μ for the mutation probability per locus 
per generation (assuming for simplicity that the probability 
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to mutate from mutant to wild-type (WT) is the same as 
that to mutate from WT to mutant, though we relax this 
assumption in supplementary text, Supplementary 
Material online), and r is the recombination probability 
per locus per generation.

Intuitively, (2) shows that excess changes in allele fre
quencies/correlations that cannot be explained by muta
tion or recombination are evidence for selection/ 
epistasis. The first term in the ‘numerator’, Δx, gives the 
observed change in the single and double mutant allele 
frequencies between the final and the initial time points. 
This raw difference is then adjusted by the expected cumu
lative mutational flows of single and double mutant fre
quencies over the trajectory, μ vint. Finally, the change in 
double mutant frequencies is adjusted to account for their 
expected shift due to recombination, r ηint. Linkage effects 
are incorporated through the inverse of the regularized in
tegrated covariance matrix. This matrix, which captures 
the magnitude of allele frequency changes expected due 
to chance alone, also sets the scale of the inferred selection 
coefficients and epistatic interactions. Frequency changes 
that are significantly larger than chance expectations are 
therefore evidence for strong selection. As an example, 
distant loci that remain strongly linked over long times 
despite frequent recombination (see (4)) would suggest 
a strong, positive epistatic interaction between these loci.

In the following, we use simulations to demonstrate 
that our approach accurately infers fitness parameters 
using data from populations evolving under selection, 
mutation, recombination, epistasis, and nontrivial genetic 
linkage. We also show conditions under which reliable in
ference of selection and epistasis is possible. In cases where 
low genetic diversity precludes the accurate inference of 
some fitness parameters, MPL is still able to infer their col
lective fitness contributions.

Results
Accurate Estimation of Epistasis and Selection 
Coefficients
We first analyzed the performance of MPL on a two-locus 
bi-allelic system. We ran extensive simulations varying the 
selection strength, the composition of the initial popula
tion and different types of epistasis. The types of epistatic 
interactions we considered include positive epistasis, 
where the double mutant has a fitness higher than the 
sum of the individual fitness effects of each mutant allele; 
negative epistasis, where the fitness of the double mutant 
is lower than the sum of the individual fitness effects of 
each mutant allele; and sign epistasis, where the direction 
and the magnitude of the fitness effect of epistasis is op
posite to and larger than the sum of the individual fitness 
effect of the two mutant alleles.

We found that MPL is typically able to accurately infer 
underlying fitness parameters. In the simulation shown in 
figure 1, the initial population consisted of only the WT 
genotype. MPL estimates (21) of selection coefficients 
were accurate in each simulated scenario. Estimates of 

the epistasis terms were better in scenarios where both 
the selection coefficients were beneficial (fig. 1A) com
pared with the scenarios where both were deleterious 
(fig. 1B), regardless of the type of epistasis. This is because 
double mutants tend to appear very rarely in cases where 
both single mutants were less fit than WT, as the single mu
tants are rapidly purged from the population. In such cases 
(fig. 1B), the double mutant genotype never exceeded 4% of 
the population in our simulations. A similar situation oc
curred in the positive sign epistasis scenario (fig. 1B bottom 
panel). Thus, genetic diversity constrains the accuracy of 
the epistasis estimates, which is also reflected in the uncer
tainty of the inferred parameters (fig. 2).

We further tested the ability of MPL to infer selection 
coefficients and epistasis terms under varying degrees of 
genetic diversity, on a two-locus bi-allelic system, by chan
ging the composition of genotypes in the initial popula
tion. We found that the inference of these fitness 
parameters was quite accurate when all four genotypes ap
peared at high frequencies in the population, even when 
both single mutations were deleterious (top left panel of 
fig. 3). When some of the mutant genotypes are never pre
sent in the population, however, not all fitness parameters 
can be accurately inferred (e.g., the top right panel of fig. 3). 
These results show that genetic diversity in data limits 
which fitness parameters can be inferred.

Identifiability of Fitness Parameters
Based on patterns of genetic diversity in the time-series 
data, the estimated fitness parameters can be naturally 
classified into one of three categories: accessible, partially 
accessible, or inaccessible, by examining the structure of 
the integrated covariance matrix used as part of the 
MPL estimator. Accessible fitness parameters are ones 
that could be independently estimated in principle (vice- 
versa for the inaccessible parameters), whereas partially ac
cessible fitness parameters can only be estimated as part of 
a sum. Specifically, this is done by reducing the integrated 
covariance matrix to its reduced row-echelon form and 
checking the linear dependencies of its rows. The fitness 
parameters whose corresponding rows of the integrated 
covariance matrix are linearly independent are denoted 
as accessible. These can be estimated meaningfully. The fit
ness parameters corresponding to linearly dependent rows 
are classed as partially accessible. While these parameters 
cannot be meaningfully estimated individually, we can still 
estimate their sum. Finally, fitness parameters correspond
ing to the rows of the integrated covariance matrix with all 
zero entries are referred to as inaccessible as there is insuf
ficient data to provide a meaningful estimate, either indi
vidually or as part of a sum, of these parameters. As an 
example, we can consider a population with two loci la
beled 1 and 2 where only two genotypes are ever observed, 
one with both WT and one with both mutant alleles. Then 
the individual coefficients s1, s2, s12 cannot be independ
ently inferred, but their sum s1 + s2 + s12 can be estimated.

When the population consisted of all but one of the sin
gle mutant genotypes (right and left panels of second row of 
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fig. 3), one of the selection coefficients was accessible (and 
thus accurately inferred) while the remaining two fitness 
parameters were partially accessible. In scenarios where 
the double mutant was absent from the population (left pa
nel of third row of fig. 3), the selection coefficients were ac
cessible, however there was no data to make any 
meaningful inference of the epistasis term. When the 
data contained only the WT and the double mutant geno
types (right panel of third row of fig. 3), all three fitness 
parameters were partially accessible as their inferred 
sum was accurate even though neither the selection coef
ficients nor the epistasis terms could be accurately in
ferred individually. Finally, in scenarios where only one 
of the two loci was polymorphic, and thus accessible, it 
was not possible to make a meaningful inference about 
the selection coefficient at the non-polymorphic locus 
or the pairwise epistasis term (bottom left and bottom 
right panels of fig. 3).

Additional tests demonstrated that the performance of 
MPL was consistent across a variety of landscapes, compris
ing of beneficial and/or deleterious selection coefficients 
and various forms of epistasis like positive, negative, positive 
sign, and negative sign epistasis (supplementary fig. S1, 
Supplementary Material online).

Analysis of a More Complex Five-locus Epistatic 
Fitness Landscape
We ran further simulations on a more complex five-locus 
system to test the effects of genetic diversity on the infer
ence of MPL. Genetic diversity in these simulations was 
controlled in two ways: (i) by specifying the number of un
ique genotypes in the initial population (fig. 4), and (ii) by 
combining data from multiple independent low genetic di
versity replicates (fig. 5).

As expected, there was an increase in the fraction of ac
cessible fitness parameters (figs. 4C, 4E, 5C and 5E) and bet
ter inference of the fitness landscape (figs. 4B and 5B) as 
the level of genetic diversity increased. Our results show 
that for a given level of genetic diversity, the fraction of ac
cessible selection coefficients is higher than the fraction of 
accessible epistasis terms (supplementary fig. S2, 
Supplementary Material online), that is, higher genetic di
versity is required for inference of epistasis than that re
quired for inference of selection coefficients alone. This 
is because, for an epistasis term to be accessible, both cor
responding selection coefficients must also be accessible.

We used area under the receiver operating character
istic curve (AUROC) as a performance metric to quantify 

FIG. 1. MPL can accurately infer selection coefficients and pairwise epistasis terms. Results were obtained for a two-locus system with selection, 
mutation, and recombination. (A) shows distribution of inferred selection coefficients and pairwise epistasis terms for various forms of epistasis 
when both selection coefficients are positive (s1 = s2 = 0.03), while (B) shows the same for the case when both selection coefficients are negative 
(s1 = s2 = −0.03). The pairwise epistasis term s12 was set to {0, 0.015, − 0.015, 0.07, − 0.07} to simulate the scenarios of no epistasis, positive 
epistasis, negative epistasis, positive sign epistasis, and negative sign epistasis, respectively. Other simulation parameters included per locus mu
tation probability μ = 10−3, per locus recombination probability r = 10−3, and population size N = 1000. The initial population consisted of only 
the WT genotype (00). The sampling parameters were set to ns = 100, Δt = 10, and T = 1000, where ns is the number of samples, Δt is the time 
sampling step and T is the number of generations used for inference. All simulation results were computed over 1000 Monte Carlo runs. The 
dashed lines represent the true selection coefficients (s1 and s2) and epistasis term (s12). In these simulations, s1 = s2, hence the histograms of the 
estimates of the two have a significant overlap shown in grey color.
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the ability of MPL to classify beneficial and deleterious 
fitness parameters. When computed over all selection 
coefficients (left panels of figs. 4D and 5D) and all pair
wise epistasis terms (left panels of figs. 4F and 5F), the re
sults showed higher detection performance with 
increasing genetic diversity. The poor performance at 
low genetic diversity was due to the large number of 
parameters that were either inaccessible or partially ac
cessible, and thus cannot be meaningfully inferred due 
to lack of data. Computing the AUROC metric but re
stricted to only those selection coefficients classed as ac
cessible revealed that the MPL estimator was able to 
correctly classify nearly all of such selection coefficients, 
under all scenarios considered (right panels of figs. 4D
and 5D). The classification of accessible epistasis terms 
also showed good performance at moderate and high 
genetic diversity (right panels of figs. 4F and 5F). 
Although none of the epistasis terms were accessible at 
low genetic diversity, combining multiple replicates 
using (22) resulted in some epistasis terms becoming ac
cessible (fig. 5E).

Similar results were obtained across a range of fitness land
scapes differing in the degree of sparsity in their pairwise epis
tasis terms (supplementary fig. S3, Supplementary Material
online). These tests demonstrate that MPL has a very good 
ability to detect those fitness parameters for which there is 
sufficient data to enable inference and classification.

Robustness to Sampling Parameters
The accuracy of the estimator depends on how well the 
underlying population dynamics is sampled. This includes 
how often the population is sampled in time, the number 
of samples measured at each time point, and the number 
of generations used for inference. Here we test the robust
ness of the MPL method with respect to these sampling 
parameters. In general, one would expect performance 
to degrade as samples are taken further apart in time (in
creasing time sampling step Δt) for a fixed number of gen
erations used for inference, T, or as the number of 
generations used for inference is reduced for a fixed time 
sampling step, as less of the trajectory dynamics are 

FIG. 2. Higher genetic diversity leads to more accurate inference. (A) shows a sample run (left panel) of a two-locus system (negative epistasis 
scenario) where all genotypes are well represented in the data, as indicated by the magnitude of the diagonal entries of the integrated covariance 
matrix (center panel). This leads to accurate estimation of the epistasis term and the selection coefficients (right panel). The vertical bars in the 
right panel indicate the 95% confidence intervals while the horizontal bars indicate the true selection coefficients and epistasis terms. (B) shows a 
sample run (left panel) of a two-locus system (positive epistasis scenario) where the double mutant genotype has limited diversity, as indicated 
by the magnitude of the bottom right entry of the integrated covariance matrix (center panel). This leads to low accuracy in the estimate of the 
epistasis term. The selection coefficient estimates are still accurate because the single mutant genotypes, although present at low frequencies, are 
well represented in the data as indicated by the first two entries of the diagonal of the integrated covariance matrix (center panel). The results 
were obtained for a two-locus system with selection, mutation, and recombination. We set the selection coefficients s1, s2 and epistasis term s12 
to {0.03, 0.03, − 0.015} and { − 0.03, − 0.03, 0.015} in (A) and (B), respectively. Other system parameters included per locus mutation prob
ability μ = 10−3, per locus recombination probability r = 10−3, and population size N = 1000. The initial population consisted of only the WT 
genotype. The sampling parameters, in both simulations, were set to ns = 100, Δt = 10, and T = 1000, where ns is the number of samples, Δt is 
the time sampling step and T is the number of generations used for inference.
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captured in both these sampling scenarios. Moreover, tak
ing limited samples at each time point would reduce the 
accuracy of the allele frequency estimates which may 
also compromise the accuracy of the MPL estimate.

To test the robustness of the estimator, we ran exten
sive simulations under various sampling conditions. 
These simulations demonstrated that MPL can accurate
ly detect both accessible selection coefficients and ac
cessible epistasis terms for a range of sampling 
parameters (fig. 6 and supplementary fig. S4, 
Supplementary Material online, respectively). MPL per
formed quite well even when the observed data con
sisted of a low number of samples, ns, with only a few 

time samples (large time sampling step, Δt). For example, 
at ns = 50 (from a population of N = 1000), the AUROC 
of detecting accessible beneficial selection coefficients 
(top left panel of fig. 6) varied from 0.94 to 0.9 when 
the time sampling step was increased from Δt = 5 to 
Δt = 50 (corresponding to 21 and 3 time samples, re
spectively ,over T = 100 generations used for inference). 
Similarly, MPL performed well even when only a few time 
points that captured the evolutionary dynamics were 
used for inference. For example, the AUROC of detecting 
accessible beneficial selection coefficients (bottom left panel 
of fig. 6) varied from 0.91 to 0.95 when the number of gen
erations used for inference was increased from T = 30 to 

FIG. 3. MPL can accurately estimate individual fitness parameters (selection coefficients and epistasis terms) and/or their sums depending on the 
genetic diversity present in the population. The results are for a two-locus system with positive sign epistasis (selection coefficients s1 = −0.02, 
s2 = −0.03 and pairwise epistasis term s12 = 0.075). All simulation results were computed over 1000 Monte Carlo runs. The boxplots of inferred 
selection coefficients and epistasis terms are shown on white background in each panel, while those of their sums are shown on gray background. 
The red bars indicate the true values of the respective terms. The boxplots show the standard data summary (first quartile, median, third quartile) 
with the whiskers showing 1.5 times the interquartile range. In order to control genetic diversity, both the per locus mutation probability and the 
per locus recombination probability were set to zero. The population size N was set to 1000. The panels depict scenarios with different starting 
populations. The genotypes contained in the starting population of each simulated scenario are mentioned on top of each panel. The frequency of 
each non-WT genotype in the initial population was set to 10% of the population size. The sampling parameters were set to ns = 100, Δt = 10, and 
T = 150, where ns is the number of samples, Δt is the time sampling step and T is the number of generations used for inference.
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T = 140 (corresponding to 7 and 29 time points, respective
ly, with Δt = 5). These results show that MPL estimator is 
robust to reasonable limitations in sampling depth and 
frequency.

Comparison with Other Models
A Model that Does not Account for Epistasis
For fitness landscapes with epistasis, any inference model 
that does not explicitly account for epistasis will ascribe 
the effect of epistasis terms to individual selection coeffi
cients, thereby over- or under-estimating them. To test 
this, we ran simulations to compare the performance of 
the MPL method, which accounts for both linkage and epis
tasis, with the one we proposed previously, which accounts 

only for linkage and considers a first-order fitness model 
with no epistasis (Sohail et al. 2021). Here we term this vari
ant as “MPL (without epistasis)”. Simulations on simple 
two-locus systems with different fitness parameter settings 
showed that when the epistasis term was accessible (based 
on genetic diversity in the data), MPL estimates were more 
accurate than MPL (without epistasis) for scenarios where the 
fitness landscape had epistasis, particularly when any pair 
of fitness parameters had opposite signs (supplementary 
fig. S5, Supplementary Material online).

Next, we tested the classification performance of the 
two methods in a five-locus system. Initially, we chose rela
tively simple structures for the fitness landscapes; that is, 
no epistasis links between loci with mutant allele selection 

FIG. 4. The fraction of selection coefficients and epistasis terms that are accessible depends on the genetic diversity in data. (A) shows the true 
fitness parameters of a five-locus system, where the selection coefficients at loci are shown by circles and pairwise epistasis terms by chords be
tween loci (blue: beneficial and red: deleterious). Specifically, we set selection coefficients as s1 = 0.0385, s2 = 0.0605, s3 = −0.0318, s4 = −0.0632, 
s5 = 0.002, and epistasis terms as s12 = −0.0361, s13 = −0.052, s14 = 0.0341, s15 = 0.0262, s23 = 0.0293, s24 = −0.0278, s25 = −0.075, s34 = 0.0498, 
s35 = −0.0283, s45 = 0.0721. The left, center, and right panels of (B) show the average inferred fitness parameters obtained for different levels of 
genetic diversity (controlled by varying the number of unique genotypes in the initial population to either 5, 10, or 20). (C ) shows the fraction of 
accessible selection coefficients as a function of genetic diversity. The left and right panels of (D) show the mean classification performance com
puted over all selection coefficients and over only the accessible selection coefficients respectively. The error bars indicate the standard error of the 
mean. (E) shows the fraction of accessible epistasis terms as a function of genetic diversity. The left and right panels of (F) show the classification 
performance computed over all and only the accessible epistasis terms respectively. “NA” indicates the metric was not computed due to lack of 
data. The population size N was set to 1000. Both the per locus mutation probability and the per locus recombination probability were set to zero 
in this simulation to control genetic diversity. The frequency of each non-WT genotype in the initial population was set to 5% of the population 
size. The sampling parameters were set to ns = 100, Δt = 10, and T = 100, where ns is the number of samples, Δt is the time sampling step, and T is 
the number of generations used for inference. All simulation results were computed over 1000 Monte Carlo runs.
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coefficients of opposite signs, and all epistasis links having 
similar strengths and the same sign (top row panels of fig. 
7A). We also varied the strength of the epistasis terms from 
strong (both selection coefficients and epistasis terms 
drawn from the same distribution) to weak (epistasis 
terms an order of magnitude weaker than the selection 
coefficients). Our results showed that when the genetic di
versity in the data was low, the relative classification per
formance of the two methods was dependent on the 
underlying fitness landscape (middle row panels of fig. 
7A), with MPL generally performing better than or as 
well as MPL (without epistasis). However, combining mul
tiple low-diversity independent replicates using (22) re
sulted in MPL performing significantly better than MPL 
(without epistasis) in all scenarios tested, including weak, 

strong, positive, and negative epistasis (bottom row panels 
of fig. 7A).

We also compared the performance of the two meth
ods on more complicated fitness landscapes with both 
positive and negative epistasis terms, and on fitness land
scapes of varying density of non-zero epistasis terms (i.e., 
different epistasis sparsity levels). We generated several 
such fitness landscapes, with similar magnitudes of selec
tion coefficients and pairwise epistasis terms as the fit
ness landscape in figure 4A, but differing in the density 
of epistasis terms, ranging from a purely additive land
scape (no epistasis terms) to a highly epistatic landscape 
(with all pairwise epistasis terms being non-zero). We 
grouped these landscapes on the basis of number of non- 
zero pairwise epistasis terms. Our results demonstrated 

FIG. 5. The fraction of selection coefficients and epistasis terms accessible in low genetic diversity scenarios can be increased by combining mul
tiple independent replicates. (A) shows the true fitness parameters of a five-locus system, where the selection coefficients at loci are shown by 
circles and pairwise epistasis terms by chords between loci (blue: beneficial and red: deleterious). The underlying fitness landscape was the same 
as in figure 4A. The left, center, and right panels of (B) show the average inferred fitness parameters obtained for different levels of genetic di
versity (controlled by using either 1, 3, or 5 replicates for inference). (C ) shows the fraction of accessible selection coefficients increases with the 
increase in genetic diversity. The left and right panels of (D) show the mean classification performance computed over all selection coefficients 
and over only the accessible selection coefficients respectively. The error bars indicate the standard error of the mean. (E) shows the fraction of 
accessible epistasis terms as a function of genetic diversity. The left and right panels of (F ) show the classification performance computed over all 
and only the accessible epistasis terms respectively. “NA” indicates the metric was not computed due to lack of data. Both the per locus mutation 
probability and the per locus recombination probability were set to zero in this simulation to control genetic diversity. The population size N was 
set to 1000, and the initial population contained five unique genotypes. The frequency of each non-WT genotype in the initial population was set 
to 5% of the population size. The sampling parameters were set to ns = 100, Δt = 10, and T = 100, where ns is the number of samples, Δt is the 
time sampling step and T is the number of generations used for inference. All simulation results were computed over 1000 Monte Carlo runs.
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that in high genetic diversity scenarios, MPL had better 
performance than MPL (without epistasis) regardless of 
the density of epistasis terms in the fitness landscape 
(fig. 7B). In scenarios where the genetic diversity in the 
data was low, the two methods had similar performance 
when the underlying fitness landscape was additive or 
had low density of pairwise epistasis terms, while MPL 
had superior performance when the fitness landscape 
was highly epistatic (fig. 7B). Interestingly, our simula
tions showed that even in scenarios where none of the 
epistasis terms were accessible (supplementary fig. S2, 
Supplementary Material online), MPL still showed a 
marked improvement in performance over MPL (with
out epistasis) in classifying accessible selection coeffi
cients (supplementary fig. S6, Supplementary Material
online). Overall, our approach enabled us to disentangle 
the confounding effects of linkage and epistasis from 
data, resulting in more accurate inference of fitness 
parameters.

A Model that Accounts for Epistasis
We further compared our method with that of Illingworth 
et al. (2014) (see supplementary text, Supplementary 
Material online), a state-of-the-art method that also accounts 
for epistasis, but unlike MPL, is based on a deterministic evo
lutionary model, and requires the use of numerical optimiza
tion algorithms. Our simulations demonstrated that MPL 
showed better classification performance and was consider
ably faster (supplementary fig. S7, Supplementary Material
online). The performance improvement of MPL was particu
larly evident for scenarios with deleterious selection 

coefficients and with negative sign epistasis (supplementary 
fig. S8, Supplementary Material online).

Scaling to Larger Systems
For a bi-allelic system, the number of selection coefficients 
grow linearly with the number of loci in the system, L, 
while the number of epistasis terms grow quadratically 
as L(L − 1)/2. To test the effect this increase in the number 
of fitness parameters has on their accessibility and the per
formance of MPL, we simulated systems of different sizes 
(10-, 20-, and 30-locus systems). Our results showed that 
the fraction of accessible parameters and the AUROC clas
sification performance tended to reduce as the number of 
loci increased. However, by increasing the genetic diversity 
through multiple replicate combining, all fitness 
parameters eventually became accessible for all three sys
tem sizes (top row of supplementary fig. S9, 
Supplementary Material online). Simulations also showed 
that the accessibility of fitness parameters was robust to 
the level of sparsity in the underlying fitness landscape 
(supplementary fig. S10, Supplementary Material online). 
Consistent with earlier results, increased genetic diversity 
for a given system size resulted in improved classification 
performance (supplementary fig. S9, Supplementary 
Material online).

Computational Complexity
The closed-form nature of the MPL estimate (21) makes 
it potentially computationally efficient. The two most 
computationally intensive steps in the algorithm are 
(i) calculating the triple and quadruple mutant allele 

FIG. 6. MPL is robust to variation in sampling parameters. The top left and top right panels show the mean AUROC performance of detecting 
accessible beneficial and deleterious selection coefficients, respectively. The top panels show mean AUROC performance for a range of values of 
number of samples, ns , and time sampling step, Δt, with a fixed value of number of generations used for inference, T = 100, while the bottom 
panels show the performance for a range of values of T with ns = 100 and Δt = 5. Results are for a five-locus system with the fitness landscape 
shown in figure 4A. The population size N was set to 1000 and the initial population contained 20 unique genotypes. Other simulation para
meters included per locus mutation probability μ = 10−4 and per locus recombination probability r = 10−4. All results were averaged over 1000 
Monte Carlo runs.
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frequencies from the data, and (ii) inversion of the regu
larized integrated covariance matrix. The number of tri
ple and quadruple mutant frequencies required for 
computing the inverse term in (21) increases as L4, where 
L is the number of loci. However, this number can be re
duced based on the genetic diversity in the data. For in
stance, for any locus-pair (i, j) whose double mutant 
frequency is zero, it follows that any three tuple (i, j, k) in
volving the same pair will have a triple mutant frequency 

of zero and hence its calculation can be avoided. Similarly, 
the number of quadruple mutant frequencies that need 
to be computed can also be reduced. The computations 
required for computing the inverse term can also be re
duced by considering only the polymorphic loci Lp < L, in
stead of the whole sequence, leading to Rp = Lp(Lp + 1)/2 
parameters to be estimated. The inverse would then re
quire O(R3

p) computations, with Rp ≪ R in practice for 
realistic data sets.

FIG. 7. Ability of MPL to accurately identify selection coefficients is robust to the density and the strength of non-zero epistasis terms in the 
fitness landscape. (A) panels in the top row show simple fitness landscapes, that is, no epistasis links between loci with mutant allele selection 
coefficients of opposite signs and all epistasis links of similar strengths and the same sign, while panels in the center and bottom rows show the 
classification performance of MPL and MPL (without epistasis) on data consisting of a single low genetic diversity replicate and that where five 
low-diversity replicates are combined, respectively. (B) shows the AUROC performance of both methods for varying density of epistasis terms in 
the fitness landscape under high and low genetic diversity scenarios. Error bars indicate the standard error of the mean. All fitness landscapes had 
two beneficial, two deleterious, and one neutral selection coefficients. Both the selection coefficients and epistasis terms, in the fitness land
scapes with strong epistasis in (A), were randomly drawn from uniform distributions over the ranges [0.03, 0.04] and [ − 0.03, − 0.04] for bene
ficial and deleterious fitness parameters, respectively. While, the selection coefficients of the fitness landscapes with weak epistasis in (A) 
were drawn from the same distributions as before but the epistasis terms, positive and negative, were drawn from uniform distributions 
over the ranges [0.003, 0.004] and [ − 0.003, − 0.004], respectively. For the fully connected fitness landscape in (B), we used the same fitness 
landscape as in figure 4A. Half of the epistasis terms in this fitness landscape were positive while the other half were negative. To obtain a fitness 
landscape with a desired sparsity level, we set a randomly selected set of epistasis terms to zero. For a given sparsity level, we averaged the per
formance results over 10 randomly selected landscapes, except for the fully connected and the purely additive (all epistasis terms set to zero) 
landscape cases where the results are for a single landscape. Numerical values of all fitness landscapes used in these simulations are provided in 
supplementary table S1, Supplementary Material online. The initial population contained 5 unique genotypes, with per locus mutation prob
ability μ = 10−4 and per locus recombination probability r = 10−4, and population size N = 1000. The sampling parameters were set to ns = 100 
and Δt = 10, with T = 100 generation used for inference. All simulation results were computed over 1000 Monte Carlo runs.
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Discussion
Epistasis is a pervasive phenomenon that can strongly shape 
the evolution. Genetic time-series data provide an opportun
ity to detect and estimate epistatic contributions to fitness. 
However, developing methods that can efficiently yield ac
curate inferences has remained a challenge. Here we pro
posed a method to address this challenge. Our approach is 
a physics-based approach that builds upon a framework 
that we recently introduced for non-epistatic models 
(Sohail et al. 2021). Through simulations, we demonstrated 
that our method can accurately infer both pairwise epistasis 
effects and individual selection coefficients, provided suffi
cient variation exists in the data. Moreover, the method sys
tematically reveals necessary conditions on genetic variation 
in the data in order for accurate inferences to be possible, and 
for the separate contributions of epistasis and allele selection 
coefficients to be inferrable.

MPL uses a path integral to approximate the likelihood 
of a set of evolutionary parameters (including epistasis), gi
ven an observed time-series of allele frequencies and their 
correlations. This framework can also be adapted for differ
ent evolutionary scenarios. In recent work, it was applied 
together with epidemiological models to infer the trans
mission effects of mutations from genomic surveillance 
data, and to study the evolution of SARS-CoV-2 (Lee 
et al. unpublished data).

The data input to MPL, under a fitness model with pair
wise epistasis terms, consists of the single, double, triple, 
and quadruple mutant allele frequencies. While these are 
readily available from long-read sequencing data, the dou
ble and higher mutant allele frequencies cannot be com
puted extensively for short-read data. More work is 
required to develop methods that can accurately detect 
or infer selection and epistasis for such data sets. 
However, the trend toward longer read lengths in third- 
generation sequencing technologies (Pollard et al. 2018) 
suggests that higher-order mutant frequencies will be 
more readily available in future data sets. While fitness 
models with higher-order epistasis involving more than 
two mutant alleles are also possible (Weinreich et al. 
2013), here we restricted our analysis to a fitness model 
with pairwise epistasis terms. In principle, the MPL frame
work can be extended to account for higher-order epistasis 
terms by explicitly modeling the evolution of higher-order 
mutant allele frequencies. However, the contribution of 
epistasis terms to fitness typically declines with 
their order (Weinreich et al. 2018) and, at least in some 
scenarios, the gain achieved by modeling higher-order 
epistasis beyond pairwise terms appear to be minimal 
(Lozovsky et al. 2021).

MPL, like all inference methods, requires sufficient 
diversity to enable parameter inference. For a fitness 
model with pairwise epistasis terms, the number of 
model parameters to be inferred increases quadratically 
with the sequence length. As such, data with insufficient 
variation may lead to a situation where most of the 
model parameters are partially accessible or inaccessible 

(supplementary fig. S2, Supplementary Material online). 
This is not intrinsically a limitation of our specific method, 
but rather of a lack of exploratory power in the data. 
However, in scenarios where multiple of such low-diversity 
independent replicates are available, MPL offers a solution 
to overcome this limitation by providing a systematic way 
to combine low-diversity replicates.

The current approach infers a fitness landscape with 
epistasis terms between every pair of mutant alleles, in 
contrast to an additive fitness landscape inferred in 
Sohail et al. (2021). One can also consider selecting the 
most likely fitness model, given the data, from a reduced 
set of models with different densities of epistasis terms 
using a model selection approach. However, it may only 
be feasible to pursue model selection approaches for mod
erate sized systems due to the exponential increase in the 
number of possible models with increasing system size. An 
alternative approach can be to apply a sparsity constraint 
on the epistasis terms. Future work on this problem can 
leverage sparsity inducing techniques such as the least ab
solute shrinkage and selection operator (LASSO) regres
sion family of methods (Tibshirani 1996; Yuan and Lin 
2006), to come up with a computationally efficient algo
rithm suitable for systems with hundreds or thousands 
of segregating mutations.

Materials and Methods
Model
We consider a population of N individuals evolving under a 
WF model with selection, mutation and recombination. 
Each individual is represented by a sequence of length L. 
The loci are assumed to be bi-allelic where each locus is ei
ther 0 (wild-type (WT)) or 1 (mutant), thus resulting in 
M = 2L genotypes. We consider a fitness model that ac
counts for epistasis arising due to pairwise interactions be
tween alleles at different loci. The Wrightian fitness fa of 
the ath genotype can then be written as

fa = 1 +
􏽘L

i=1

siga
i +

􏽘L

i=1

􏽘L

j=i+1

sijga
i ga

j , (5) 

where si and sij denote the time-invariant selection 
coefficients and pairwise epistasis terms respectively, and 
ga

i represents the allele (either 0 or 1) at the ith locus 
of the ath genotype. The population is completely 
specified by the M × 1 genotype frequency vector 
z(t) = (z1(t), . . . , zM(t)), where za(t) = na(t)/N and na(t) 
denotes the number of individuals in the population 
that belong to genotype a at generation t.

Under WF dynamics, the probability of observing geno
type frequencies z(t + 1) at generation t + 1, given geno
type frequencies of z(t) at generation t is

P(z(t + 1) | z(t)) = N!
􏽙M

a=1

(pa(z(t)))Nza(t+1)

(Nza(t + 1))!
(6) 
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with

pa(z(t)) =
ya(t)fa +

􏽐
b≠a (μbayb(t)fb − μabya(t)fa)
􏽐M

b=1 yb(t)fb
. (7) 

Here μba is the probability of genotype b mutating to geno
type a, and ya(t) is the frequency of genotype a after re
combination

ya(t) = (1 − r)L−1za(t) + (1 − (1 − r)L−1)ψa(z(t)), (8) 

where r is the recombination probability per locus per 
generation and ψa(z(t)) is the probability that a recombin
ation of two individuals results in an individual of genotype 
a (see supplementary text, Supplementary Material online 
for details).

We assume the genotype frequencies are observed at non- 
consecutive generations tk, with k ∈ {0, 1, . . . , K}. Then, the 
probability that the genotype frequency vector follows a par
ticular evolutionary path (z(t1), z(t2), . . . , z(tK)), condi
tioned on the initial state z(t0), is

P((z(tk))K
k=1 | z(t0)) =

􏽙K−1

k=0

P(z(tk+1) | z(tk)). (9) 

This expression can be used to infer evolutionary parameters. 
However, the inference problem is difficult due to the intract
ability of the fractional form of (7). Following the approach 
used in Sohail et al. (2021), we simplify the inference problem 
using a path integral. This allows us to obtain closed-form es
timates of selection coefficients and epistasis terms. Even 
though the WF dynamics is defined at the genotype level 
(9), here we develop its simplified allele-level version for trans
parency. We show later in this section that both the genotype 
and allele-level analyses lead to the same expression for the 
estimate of fitness parameters. For ease of exposition, we as
sume here that the probability of mutating from a WT to 
mutant allele is the same as that from mutant allele to 
WT, which we denote by μ. However, this assumption can 
be easily relaxed (see supplementary text, Supplementary 
Material online for details where we derive the estimator 
with asymmetrical mutation probabilities).

Linear Mapping between Genotype and Allele Frequencies
The allele frequencies can be described by taking a linear 
combination of genotype frequencies. Specifically,

xi(t) =
􏽘M

a=1

ga
i za(t), xij(t) =

􏽘M

a=1

ga
i ga

j za(t),

xijk(t) =
􏽘M

a=1

ga
i ga

j ga
kza(t), xijkl(t) =

􏽘M

a=1

ga
i ga

j ga
kga

l za(t),

(10) 

where xi(t), xij(t), xijk(t), and xijkl(t) are the single, double, 
triple, and quadruple mutant allele frequencies at locus i, 

locus-pair (i, j), locus-triplet (i, j, k), and locus-quartet 
(i, j, k, l), respectively, at generation t.

We will explicitly model the evolution of the single and 
double mutant allele frequencies, which we represent by 
the single vector,

x(t) = (x1(t), . . . , xL(t), x12(t), x13(t), . . . , x(L−1)L(t)). (11) 

For notational convenience (to facilitate sequential index
ing), we equivalently write

x(t) = (x1(t), . . . , xL(t), xL+1(t), . . . , xR(t)), (12) 

where R = L(L + 1)/2. Here, and in the following, we differen
tiate between non-italic and italic scalar notation. From (11) 
and (12), we have xe(t) = xi(t) for e ≤ L, and xe(t) = xij(t) for 
L < e ≤ R. We will explicitly denote the index mapping as 
e 7! i for the former case, and e 7! (i, j) for the latter.

Path Integral
We model the evolution of both the single and double mu
tant allele frequencies. In the allele-level path integral, 
these are required to obtain estimates of the selection 
coefficients and the pairwise epistasis terms (see 
supplementary text, Supplementary Material online for 
the genotype-level path integral formulation).

The probability of observing a path of allele frequencies 
(x(t1), x(t2), . . . , x(tK)) conditioned on x(t0) is given by

P((x(tk))K
k=1 | x(t0)) =

􏽙K−1

k=0

P(x(tk+1) | x(tk)). (13) 

We use a path integral to approximate this probability, as 
described in New Approaches. This gives the following 
closed-form approximation of the transition probability 
(see supplementary text, Supplementary Material online 
for details)

P(x(tk+1) | x(tk)) ≈ ϕ(x(tk+1) | x(tk))
􏽙R

e=1

dxe(tk+1), (14) 

where

ϕ(x(tk+1) | x(tk))

=
N

2πΔtk

􏼒 􏼓R/2exp ( − (N/2)Θ(x(tk+1), x(tk)))
������������
detC(x(tk))
√

with Δtk = tk+1 − tk and

Θ(x(tk+1), x(tk))

=
1
Δtk

􏽘R

e=1

􏽘R

f=1

[xe(tk+1) − (xe(tk) + de(x(tk))Δtk)]

× (C−1(x(tk)))ef [xf (tk+1) − (xf (tk) + df (x(tk))Δtk)] 

Here de(x(tk)) describes the expected change in allele fre
quencies (either single mutant or pairwise, depending on e) 
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from generation tk to tk+1, given by

de(x(tk)) = xe(tk)(1 − xe(tk))se +
􏽘

f≠e

Cef (x(tk))sf

+ μve(x(tk)) + r ηe(x(tk)). (15) 

Above, s = (s1, . . . , sL, s12, s13, . . . , s(L−1)L) is the vector of 
selection coefficients and pairwise epistasis terms, with terms 
having the corresponding non-italic representation se, de
fined analogously to (12). We have also defined

ve(x(tk)) = 1 − 2xi(tk) 1 ≤ e ≤ L
xi(tk) + x j(tk) − 4xij(tk) L < e ≤ R,

􏼚

and

ηe(x(tk)) = 0 1 ≤ e ≤ L
(i − j)(xij(tk) − xi(tk)x j(tk)) L < e ≤ R,

􏼚

where e 7! i for e ≤ L and e 7! (i, j) for L < e ≤ R. The first 
term in (15) represents the expected change in allele 
frequencies (either single mutant or pairwise, depending 
on e) due to eth fitness parameter, the second term repre
sents the change due to all but the eth fitness parameter, 
the third term in (15) represents the contribution due to 
net mutational flow, while the fourth term represents the 
contributions to the expected change in allele frequencies 
due to recombination.

The matrix C(x(tk)) is a symmetric R × R matrix 
describing the covariances of the allele frequencies at 
generation tk. This can be partitioned into four sub- 
matrices, each with an intuitive interpretation (details 
in supplementary text, Supplementary Material online). 
Briefly, for e ≤ L and f ≤ L, with mapping e 7! i and 
f 7! j, the elements

Cef (x(tk)) = xij(tk) − xi(tk)xj(tk) (16) 

are the covariance between mutants at loci i and j; for 
e ≤ L and L < f ≤ R, with mapping e 7! i and f 7! (j, k), 
the elements

Cef (x(tk)) = xijk(tk) − xi(tk)x jk(tk) (17) 

are the covariance between mutant at locus i and double 
mutant at locus-pair (j, k); the elements of C(x(tk)) for 
L < e ≤ R and f ≤ L are the same as (17) due to the sym
metric nature of the covariance matrix; while for L < e ≤ 
R and L < f ≤ R, with mapping e 7! (i, j) and f 7! (k, l), 
the elements

Cef (x(tk)) = xijkl(tk) − xij(tk)xkl(tk) (18) 

are the covariance between the double mutants at 
locus-pair (i, j) and double mutants at locus-pair (k, l).

Substituting (14) in (13) gives an approximation for the 
probability of the single and pairwise mutant allele frequen
cies following the evolutionary path x(t1), x(t2), . . . , x(tK), 
conditioned on x(t0).

Marginal Path Likelihood Estimator with Epistasis
The MPL parameter estimates are obtained by adopting a 
Bayesian approach. Specifically, we use the maximum a 
posteriori (MAP) criterion to find the most likely selection 
coefficients and epistasis terms given the measured single, 
double, triple, and quadruple mutant frequencies at each 
sampling time point, along with knowledge of evolution
ary parameters N, μ, and r. For the purpose of developing 
an efficient inference approach, we assume that the ob
served frequencies are equal to the true frequencies in 
the population. The MPL estimate of the selection coeffi
cients and epistasis terms can thus be obtained by solving

ŝ = arg max
s

L(s; N, r, μ, (x(tk))K
k=0)Pprior(s), (19) 

where Pprior(s) is the assumed (conjugate) prior

Pprior(s) =
1

(2πσ2)R/2 exp −
1

2σ2 sTs
􏼒 􏼓

, 

with mean zero and variance σ2 > 0, and the likelihood of 
the selection coefficients and epistasis terms, s, given the 
observed data can be expressed as

L(s; N, r, μ, (x(tk))K
k=0) = P((x(tk))K

k=1 | x(t0), N, r, μ, s)

=
􏽙K−1

k=0

P(x(tk+1) | x(tk), N, r, μ, s).

(20) 

While it is challenging to calculate the likelihood (20) 
exactly, the task is simplified by using the path integral ap
proach outlined in the previous section with some modi
fications (see supplementary text, Supplementary 
Material online for details) to account for time-samples 
drawn from non-unit time intervals, Δtk = tk+1 − tk. 
Following this approach, the MAP solution is evaluated as

ŝe =
􏽘R

f=1

􏽘K−1

k=0

ΔtkC(x(tk)) + γI

􏼢 􏼣−1

ef

× xf (tK) − xf (t0) − μ
􏽘K−1

k=0

Δtkvf (x(tk))

􏼢

−r
􏽘K−1

k=0

Δtkηf (x(tk))

􏼣

,

(21) 

for e = 1, . . . , R. The inverse term consists of the covari
ance matrix of single and double mutant allele frequencies 
(a function of single, double, triple, and quadruple mutant 
allele frequencies) integrated over time, which we refer to 
as the integrated covariance matrix, plus a regularization 
term, where γ = 1/Nσ2 and I is the identity matrix.

The MPL estimator (21) has an intuitive interpretation. 
It computes the observed change in the single and double 
mutant allele frequencies between the final and the initial 
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time points, adjusts it by accounting for the (inward and 
outward) mutational flows of single and double mutant 
frequencies over time, and then applies a correction to 
the double mutant frequencies to account for the effect 
of recombination. Finally, it accounts for linkage effects 
through the inverse of the (regularized) integrated covari
ance matrix.

As shown in (21), significant changes in mutant fre
quencies—that is, ones that are substantially larger than 
those expected due to finite population size alone—that 
cannot readily be explained by mutation, recombination, 
or the effects of background mutations provide 
evidence of selection or epistatic interactions. For example, 
mutant alleles that are separated by a long distance on the 
genome and which remain strongly linked despite recom
bination would be evidence of a positive epistatic 
interaction.

Combining Multiple Independent Observations
The approach naturally lends itself to incorporating data 
from multiple replicates. These replicates may represent 
independent evolutionary paths with possibly distinct 
sampling parameters and starting conditions. Let 
tq

1, . . . , tq
Kq 

be the sampling times of the qth replicate 
and xq

i (tq
k), xq

ij(t
q
k) be the single and double mutant allele 

frequencies at the ith locus and the (i, j)th locus-pair, re
spectively, at generation tq

k . The observed trajectory of 
the single and double mutant allele frequencies of the qth 
replicate is thus denoted as xq(tq

k) = (xq
1(tq

k), . . . , xq
L (tq

k), 
xq

12(tq
k), xq

13(tq
k), . . . , xq

(L−1)L(tq
k)). The MPL estimate in this 

case is given as (see supplementary text, Supplementary 
Material online for details)

ŝe =
􏽘R

f=1

􏽘Q

q=1

􏽘Kq−1

k=0

Δtq
kC(xq(tq

k)) + γI

􏼢 􏼣−1

ef

×
􏽘Q

q=1

xq
f (tq

Kq
) − xq

f (tq
0) − μ

􏽘Kq−1

k=0

Δtq
kvf (xq(tq

k))

􏼠

−r
􏽘Kq−1

k=0

Δtq
kηf (xq(tq

k))

􏼡

,

(22) 

where Q is the number of replicates being combined, 
Δtq

k = tq
k+1 − tq

k , γ = 1/Nσ2 as before, and C(xq(tq
k)) is the 

covariance matrix of the mutant allele frequencies at gener
ation tq

k for the qth replicate.

Equivalence with the Genotype Estimate
The MPL estimate above was derived using a path integral 
for the mutant allele frequencies even though the WF evo
lutionary process is defined at the genotype level. One may 
ask if working at the level of allele frequencies leads to 
some loss in optimality? To check this, we derive the 
MPL estimate of the selection coefficients and epistasis 

terms directly from the genotype path-likelihood (see 
supplementary text, Supplementary Material online for 
details), in contrast to the mutant allele path-likelihood 
(20) as was done above. For the observed path of the geno
type frequencies (z(t0), z(t1), . . . , z(tK)), the MPL estimate 
is obtained by solving

ŝ = arg max
s

L(s; N, μ, (z(tk))K
k=0)Pprior(s), (23) 

where

L(s; N, μ, (z(tk))K
k=0) = P((z(tk))K

k=1 | z(t0), N, μ, s)

=
􏽙K−1

k=0

P z(tk+1) | z(tk), N, μ, s
( 􏼁

.

(24) 

We obtain the same expression for the MPL estimate (21) 
by solving (23) as shown in the supplementary text, 
Supplementary Material online, that is, there is no loss in 
optimality by working with the marginal allele frequencies. 
This implies that knowledge of up to fourth-order allele 
frequencies is sufficient to estimate selection coefficients 
and pairwise epistatic interactions. At least within the dif
fusion approximation, higher order frequencies do not car
ry additional information needed to estimate the fitness 
effects of individual mutations or pairwise epistasis.

Simulation Setup
We generated evolutionary histories by running WF simu
lations, with selection, mutation, and recombination, con
sisting of a population of N bi-allelic sequences evolving for 
T generations. We then randomly sampled ns sequences 
every Δt generations, and used these sampled trajectories 
for inference of fitness parameters. The specific values of 
these parameters used in simulations are specified in the 
figure captions.

In simulations where it was required to control genetic 
diversity in a population, we specified the number and the 
frequencies of the unique genotypes in the initial popula
tion, and disallowed mutations and recombination. We re
fer to the all-zero genotype as the WT genotype. In 
simulations where the initial population contained more 
than one unique genotype, one of these was always the 
WT while the others were chosen from the set of remain
ing 2L − 1 possible genotypes at random, without replace
ment. All simulation results were computed over 1000 
Monte Carlo runs. Unless stated otherwise, the initial fre
quency of each non-WT genotype was set to 5% of the 
population size, the sampling parameters were set to ns = 
100 and Δt = 10, T = 100 generation were used for infer
ence, and the regularization parameter, γ, was set to one.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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