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Figure S1 MPL can accurately estimate individual selection coefficients and pairwise epistasis terms and/or their
sums depending on the variation present in the population. Results are for a two-locus system with (A) negative sign
epistasis (s1 = 0.02, s2 = 0.03, s12 = −0.075), (B) positive sign epistasis (s1 = 0.02, s2 = −0.03, s12 = 0.05), (C)
negative epistasis (s1 = 0.02, s2 = 0.03, s12 = −0.04), (D) positive epistasis (s1 = 0.02, s2 = 0.03, s12 = 0.01).
All results were computed over 1000 Monte Carlo runs. The boxplots of inferred selection coefficients and epistasis
terms are shown on white background in each panel, while those of their sums are shown on grey background. The
red lines indicate the true values of the respective terms. The boxplots show the standard data summary (minimum,
first quartile, median, third quartile, maximum). In order to control genetic diversity, both the per locus mutation
probability and the per locus recombination probability were set to zero. The population size N was set to 1000, the
initial population contained the genotypes indicated above each panel, and the frequency of each non-WT genotype
in the initial population was set to 10% of the population size. The sampling parameters were set to ns = 100 and
∆t = 10, with T = 150 generation used for inference.



3

Figure S2 The average fraction of
accessible selection coefficients and
pairwise epistasis terms increases
with increasing genetic diversity
(controlled by changing the num-
ber of unique genotypes in initial
population to either five, ten or
twenty). The selection coefficients
and pairwise epistasis terms of a
five-locus system were classified
into three categories based on the
reduced row-Echelon form (see
Materials and Methods) of the in-
tegrated covariance matrix in (21).
Results are for the five-locus sys-
tem (i.e., five selection coefficients
and ten pairwise epistasis terms)
simulated in Figure 4.

Figure S3 MPL performs well on dense
as well as sparse fitness landscapes. (A)
shows true (model) fitness landscapes
with varying density of pairwise epis-
tasis terms, while (B) shows the corre-
sponding mean AUROC of detecting
accessible beneficial and deleterious
selection coefficients. Results are for
a five-locus system where N = 1000,
the initial population contained twenty
unique genotypes, with per locus muta-
tion probability µ = 10−4 and per locus
recombination probability r = 10−4. The
selection coefficients at loci are shown by
circles and pairwise epistasis terms by
chords between loci (blue: beneficial and
red: deleterious). Error bars indicate the
standard error of the mean.
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Figure S4 MPL is robust to variation in sam-
pling parameters. The left and right panels
show the mean AUROC performance of
detecting accessible beneficial and delete-
rious epistasis terms respectively. The top
panels show mean AUROC performance
for a range of values of number of samples,
ns, and time sampling step, ∆t, with a fixed
value of number of generations used for in-
ference, T = 100, while the bottom panels
show the performance for a range of values
of T with ns = 100 and ∆t = 5. Results are
for a five-locus system with the fitness land-
scape shown in Figure 4A. The population
size N was set to 1000. The initial population
contained twenty unique genotypes. Other
simulation parameters included per locus
mutation probability µ = 10−4 and per locus
recombination probability r = 10−4. All re-
sults were averaged over 1000 Monte Carlo
runs.



5

Figure S5 MPL has better performance than MPL (without epistasis) when epistasis exists in the fitness landscape
and the data has enough genetic diversity to infer epistasis. Results are for a two-locus system with a range of dif-
ferent fitness landscapes and different levels of genetic diversity in the data. The boxplots show the standard data
summary (first quartile, median, third quartile) with the whiskers showing 1.5 times the interquartile range. In order
to control genetic diversity, both the per locus mutation probability and the per locus recombination probability were
set to zero. The population size N was set to 1000. The panels in each row depict scenarios with different starting pop-
ulations and the genotypes contained in the starting population are mentioned above each row, while the panels in
each column depict scenarios with different fitness parameters. The frequency of each non-WT genotype in the ini-
tial population was set to 10% of the population size. The sampling parameters were set to ns = 100, ∆t = 10, and
T = 150, where ns is the number of samples, ∆t is the time sampling step and T is the number of generations used for
inference.
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Figure S6 MPL outperforms the MPL (without epistasis) method in classifica-
tion of beneficial and deleterious accessible selection coefficients even on data
with low genetic diversity. The figure shows the mean AUROC performance
of the two methods. Error bars indicate the standard error of the mean. Re-
sults are for a five-locus system with the fitness landscape shown in Figure 4A.
The population size N was set to 1000 and the initial population contained
five unique genotypes. The frequency of each non-WT genotype in the initial
population was set to 5% of the population size. Both the per locus mutation
probability µ and per locus recombination probability r set to zero. The sam-
pling parameters were set to ns = 100, ∆t = 10, and T = 100, where ns is the
number of samples, ∆t is the time sampling step and T is the number of genera-
tions used for inference. Results were computed over 1000 Monte Carlo runs.

Figure S7 MPL has improved classification perfor-
mance and improved computational efficiency com-
pared with a state-of-the-art method of Illingworth et al.
(2014) (IM). The left and center panels show the mean
AUROC performance of detecting accessible selection
coefficients and epistasis terms, respectively. The right
panel shows the mean execution time of the two meth-
ods. Results are for a five-locus system with the fitness
landscape shown in Figure 4A. The population size N
was set to 1000 and the initial population contained
20 unique genotypes. Other simulation parameters in-
cluded per locus mutation probability µ = 10−4 and
per locus recombination probability r = 10−4. The sam-
pling parameters were set to ns = 100 and ∆t = 10,
with T = 100 generation used for inference. All results
were averaged over 100 Monte Carlo runs.
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Figure S8 MPL outperforms a state-of-the-art method of Illingworth et al. (2014) (IM) in inferring fitness parameters.
Results are for the same two-locus system with selection, mutation, and recombination as in Figure 1. (A) shows box-
plots of inferred selection coefficients and pairwise epistasis terms by MPL and IM for various forms of epistasis when
both selection coefficients are positive (s1 = s2 = 0.03), while (B) shows the same for the case when both selection
coefficients are negative s1 = s2 = −0.03). The pairwise epistasis term s12 was set to {0, 0.015,−0.015, 0.07,−0.07}
to simulate the scenarios of no epistasis, positive epistasis, negative epistasis, positive sign epistasis, and negative
sign epistasis respectively. Other simulation parameters included per locus mutation probability µ = 10−3, per locus
recombination probability r = 10−3, and population size N = 1000. The initial population consisted of only the WT
genotype (00). The sampling parameters were set to ns = 100, ∆t = 10, and T = 1000, where ns is the number of
samples, ∆t is the time sampling step and T is the number of generations used for inference. All simulation results
were computed over 100 Monte Carlo runs. The solid red bars represent the true selection coefficients (s1 and s2) and
epistasis term (s12). The boxplots show the standard data summary (first quartile, median, third quartile) with the
whiskers showing 1.5 times the interquartile range.
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Figure S9 MPL can infer fitness parameters in large-sized systems, provided there is sufficient genetic diversity in
data. The mean fraction of accessible fitness parameters (top panel) is presented, along with the mean AUROC per-
formance of classifying accessible beneficial (middle panel) and deleterious (bottom panel) fitness parameters from the
rest, computed over 1000 Monte Carlo runs. For each fitness landscape, the beneficial and the deleterious fitness pa-
rameters (selection coefficients and epistasis terms) were randomly drawn from uniform distributions over the ranges
[0.025, 0.075] and [−0.025,−0.075], respectively. The fraction of beneficial and deleterious selection coefficients in the
system was ∼ 35% each, while the rest were neutral. The fraction of non-zero epistasis terms was ∼ 15% in each sim-
ulation scenario, where approximately half of the non-zero epistasis terms were positive, while the other half were
negative. The population size N was set to 1000 and the initial population contained 10 unique genotypes. Other simu-
lation parameters included per locus mutation probability µ = 10−4 and per locus recombination probability r = 10−4.
The sampling parameters were set to ns = 100 and ∆t = 10, with T = 100 generation used for inference.
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Figure S10 The fraction of accessible fitness parameters does not depend on the sparsity level of the fitness landscape.
The mean fraction of accessible fitness parameters (selection coefficients and epistasis terms) is presented, for different
sparsity levels, computed over 1000 Monte Carlo runs for a 20-locus system. For each fitness landscape, the beneficial
and the deleterious fitness parameters were randomly drawn from uniform distributions over the ranges [0.025, 0.075]
and [−0.025,−0.075], respectively. The fraction of beneficial and deleterious selection coefficients in the system was
35% each, while the rest were neutral. Sparsity here refers to the number of non-zero epistasis terms, approximately
half of which were positive while the other half were negative. The population size N was set to 1000 and the initial
population contained 10 unique genotypes. Other simulation parameters included per locus mutation probability
µ = 10−4 and per locus recombination probability r = 10−4. The sampling parameters were set to ns = 100 and
∆t = 10, with T = 100 generation used for inference.
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Inference framework

Previously, we presented the MPL framework (Sohail et al. 2021) which allows derivation of closed-from expressions for
the estimates of selection coefficients in a multi-locus system while accounting for effects of linkage, selection, mutation,
recombination, and incomplete temporal sampling, under an additive fitness model. Here, we extend this framework
to a fitness model with pairwise epistasis terms and derive the MPL estimate (21) of selection coefficient and epistasis
terms. We also give the MPL estimate to combine multiple independent replicates (22) and to account for asymmetrical
mutation probabilities under the epistatic fitness model. The key technical innovation in the present work is the modeling
of the evolution of both the single and the double mutant allele frequencies which allows the estimation of the pairwise
epistasis terms, as opposed to modeling the evolution of only the single allele frequencies in Sohail et al. (2021).

The MPL framework uses the path integral approach (Risken 1989) to efficiently compute the probability of an
evolutionary path followed by the frequency vector (of all genotypes in the population) over time. While well known in
physics (Risken 1989), the path integral approach is relatively less known in population genetics though a few exceptions
exist (Mustonen and Lässig 2010; Schraiber 2014; Illingworth et al. 2011) where the path integral was utilized for purposes
other than inference.

Path integral

We begin by describing the evolutionary model. Next, we give the expression for the genotype-level path integral
representation as derived in Sohail et al. (2021). We then derive the allele level path integral for the case of epistatic fitness
model and obtain the MPL estimate (21), followed by the MPL estimate to combine multiple replicates (22), and the MPL
estimate for asymmetrical mutation probabilities.

Evolutionary model
The evolutionary model assumed here is the same as in Sohail et al. (2021) with the exception that here the fitness model
also has pairwise epistasis terms. For completeness, we give the details of the model below.

We assume a WF model consisting of N individuals evolving under mutation, selection and recombination. Each
individual is represented by a sequence of length L. The loci are assumed to be bi-allelic where the value of each
locus is either 0 (wild-type (WT)) or 1 (mutant), thus resulting in M = 2L genotypes. For clarity, we use i, j, . . . to
refer to locus indices and a, b, . . . to refer to genotype indices. The index is shown as a subscript when representing
only one of the locus or genotype indices. However, when both indices need to be shown simultaneously, the locus
index is shown as a subscript while the genotype index is shown as a superscript. Let na(t) denote the number of
individuals in the population that belong to genotype a at generation t such that ∑M

a=1 na(t) = N. At generation t,
denote Z(t) = (Z1(t), . . . , ZM(t)) as the random genotype frequency vector, and z(t) = (z1(t), . . . , zM(t)) as an observed
realization of this random vector with za(t) =

na(t)
N .

Let r be the probability of recombination per locus per generation. The frequency of genotype a at generation t after
recombination is given by

ya(t) = (1 − r)L−1za(t) +
(

1 − (1 − r)L−1
)

ψa(z(t)) (S1)

where (1 − r)L−1za(t) represents the fraction of genotype a not undergoing recombination,
(
1 − (1 − r)L−1)ψa(z(t))

the fraction of genotype a arising as a result of recombination, and the factor L − 1 arises as there are L − 1 possible
recombination breakpoints. The quantity ψa(z(t)) is the probability that a recombination event results in an individual of
genotype a and is a function of the composition of the population at generation t. We represent this quantity as

ψa(z(t)) =
M

∑
c=1

M

∑
d=1

Ra,cdzc(t)zd(t) (S2)

where Ra,cd is the probability that genotypes c and d recombine to form genotype a and is a function of the number of
breakpoints and the particular genotypes a, c and d. We describe this in detail later in the document, when we calculate
the recombination term in (S40) and (S46).
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Under the WF dynamics, the probability of observing genotype frequencies z(t+ 1) at generation t+ 1, given genotype
frequencies of z(t) at generation t, is given by (Ewens 2012)

P
(

z(t + 1)
∣∣∣z(t)) = N!

M

∏
a=1

(
pa(z(t))

)Nza(t+1)

(Nza(t + 1))!
. (S3)

Here pa(z(t)) is given as

pa(z(t)) := E
[

Za(t + 1)
∣∣∣∣Z(t) = z(t)

]
=

ya(t) fa + ∑M
b=1,b ̸=a (µbayb(t) fb − µabya(t) fa)

∑M
b=1 yb(t) fb

, (S4)

where µba is the probability of genotype b mutating to genotype a, and fa is the Wrightian fitness of the ath genotype.
In contrast to the fitness model considered in Sohail et al. (2021), here we consider a fitness model that accounts for
epistasis arising due to pairwise interactions between loci. The total fitness of a genotype is thus given by the sum of the
independent effects of the individual loci and the pairwise interactions between all loci, i.e.,

fa = 1 + ha

= 1 +
L

∑
i=1

siga
i +

L

∑
i=1

L

∑
j=i+1

sijga
i ga

j (S5)

where ha, si, sij denote the time-invariant genotype selection coefficient, allele selection coefficient and epistasis terms
respectively, and ga

i represents the allele (either 0 or 1) at the ith locus of the ath genotype. We can compactly denote the
selection coefficients and epistasis terms in a single vector as

s =
(

s1, · · · , sL, s12, · · · , s(L−1)L

)
(S6)

where the first L elements are the selection coefficients while the last L(L − 1)/2 elements are pairwise epistasis terms.
Similar to the notation adopted in the main text, we differentiate between non-italic and italic scalar notation to facilitate
sequential indexing throughout the supplementary text. Thus we write

s =
(

s1, · · · , sL, sL+1, · · · , sR

)
(S7)

where R = L(L+ 1)/2 and we have se = si for e ∈ {1, . . . , L}, and se = sij for e ∈ {L+ 1, . . . , R}, with obvious association
between indices e and (i, j).

For simplicity of exposition, we assume that the forward and backward mutation probabilities are equal, thus
µba = µab = µdab , where µ is the per locus mutation probability and dab the Hamming distance between genotypes a and
b. Unequal forward and backward mutation probabilities can also be adapted in our model as shown further ahead in
this supplement. We may then write

pa(z(t)) =
(1 + ha) ya(t) +

M
∑

b=1
µdab ((1 + hb) yb(t)− (1 + ha) ya(t))

M
∑

b=1
(1 + hb) yb(t)

. (S8)

The probability that the genotype frequency vector evolving over T generations, where samples are collected during
non-successive generations tk ∈ {0, 1, · · · , K}, follows a particular evolutionary path (z(t1), z(t2), · · · , z(tK)) conditioned
on the initial state z(t0) is given by

P
(
(z(tk))

K
k=1 |z(t0)

)
=

K−1

∏
k=0

P (z(tk+1)|z(tk)) . (S9)

In principle, we can use the above expression to infer evolutionary parameters. However, the expression above is
unyielding for the purpose of parameter inference due to the large dimensionality of the genotype space, which grows
exponentially with sequence length, as well as intractability of the fractional form of the right hand side of (S9).
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To simplify the problem, we use a path integral to approximate the probability in (S9). The first step of the approach
consists of approximating the WF process by a diffusion process, as commonly done in population genetics (Kimura
1964; Ewens 2012; Tataru et al. 2015; He et al. 2017; Tataru et al. 2017). Specifically, assume the population is large and that

se =
s̄e

N
+ O

(
1

N2

)
, µ =

µ̄

N
+ O

( 1
N2

)
r =

r̄
N

+ O
( 1

N2

)
, (S10)

and consequently

ha =
h̄a

N
+ O

( 1
N2

)
, (S11)

where s̄e, µ̄, r̄, and h̄a are constants that are independent of N. Under this scaling, we have

ya(t) = za(t)− r(L − 1)
(
za(t)− ψa(z(t)

)
+ O

(
1

N2

)
(S12)

where L is also assumed to be constant with regards to N.

Genotype-level path integral
In Sohail et al. (2021), we derived the genotype-level path integral to approximate the probability of observing a trajectory
of genotype frequencies (z(t1), z(t2), · · · , z(tK)). Since this analysis applies equally to the current work, we give a brief
summary here. We approximated the transition probability of the WF evolutionary process, using standard diffusion
theory (Ewens 2012), by the transition probability density of a diffusion process, i.e.,

Ž(τ) =
(
Ž1(τ), . . . , ŽM(τ)

)
:= Z(⌊Nτ⌋), τ ≥ 0 (S13)

taken in the limit N → ∞. Here ⌊·⌋ denotes the floor function and τ is a continuous time variable with units of N
generations, with one generation in discrete time (i.e., from t to t + 1) thus taking

δτ =
1
N

(S14)

continuous time units. The genotype-level diffusion process was found to be characterized by the drift vector d̄(ž(τ))
with ath entry

d̄a(ž(τ)) = ža(τ)

(
h̄a −

M

∑
b=1

h̄b žb(τ)

)
+ µ̄

(
M

∑
b=1,dab=1

žb(τ)−
M

∑
b=1,dab=1

ža(τ)

)
− r̄(L − 1)

(
ža(τ)− ψa (ž(τ))

)
, (S15)

and diffusion matrix C̄(ž(τ)) with (a, b)th entry

C̄ab(ž(τ)) =
1
2

{
ža(τ)(1 − ža(τ)) a = b
−ža(τ)žb(τ) a ̸= b.

(S16)

The time evolution of the transition probability density of the diffusion process Ž(τ) is described by the Kolmogorov
forward equation (also known as the Fokker-Planck equation). Discretizing the transition probability density of the
diffusion over small δτ∆t (equivalently large N

∆t ), we approximated the probability of observing a trajectory of genotype
frequencies (z(t1), z(t2), · · · , z(tK)) conditioned on z(t0) as

P
(
(z(tk))

K
k=1 |z(t0)

)
=

K−1

∏
k=0

P(z(tk+1)|z(tk))

≈
K−1

∏
k=0

[
1√

det C(z(tk))

(
N

2π∆tk

)M/2 M

∏
a=1

dza(tk+1)

]
exp

(
−N

2
S
(
(z(tk))

K
k=0

))
(S17)

with

S
(
(z(tk))

K
k=0

)
=

K−1

∑
k=0

1
∆tk

M

∑
a=1

M

∑
b=1

[za(tk+1)− za(tk)− da(z(tk))∆tk]
(

C−1(z(tk))
)

ab
[zb(tk+1)− zb(tk)− db(z(tk))∆tk] ,

where ∆tk = tk+1 − tk and we have defined da(z(tk)) := d̄a(z(tk))
N , (C(z(tk)))ab := 2 (C̄(z(tk)))ab. This is the path integral

representation of the genotype dynamics (see Supplement of Sohail et al. (2021) for a detailed derivation).
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Allele-level path integral
In Sohail et al. (2021), we modeled the evolution of the single mutant frequencies by applying linear combinations to the
genotype frequencies described by (S17), while assuming the double mutant frequencies were known. The single and
double mutant frequencies relate to the genotype frequencies via

xi(t) =
M

∑
a=1

ga
i za(t), xij(t) =

M

∑
a=1

ga
i ga

j za(t), (S18)

where xi(t), and xij(t), are the single and the double mutant frequencies at locus i and locus-pair (i, j) respectively
at generation t. Here, in contrast, we model the evolution of both the single and double mutant frequencies which
additionally requires the knowledge of the triple and quadruple mutant frequencies. These are related to the genotype
frequencies via

xijk(t) =
M

∑
a=1

ga
i ga

j ga
kza(t), xijkl(t) =

M

∑
a=1

ga
i ga

j ga
k ga

l za(t), (S19)

where xijk(t) and xijkl(t) are the triple and the quadruple mutant frequencies at locus-triplet (i, j, k) and locus-quartet
(i, j, k, l) respectively at generation t. We concatenate the single and double mutant allele frequencies in a R length vector,
where R = L(L + 1)/2, as

x(t) =
(

x1(t), · · · , xL(t), x12(t), x13(t), · · · , x(L−1)L(t)
)

. (S20)

Similar to the notation in the main text, we write

x(t) =
(

x1(t), · · · , xL(t), xL+1(t), · · · , xR(t)
)

(S21)

to facilitate sequential indexing for notation convenience. Note that we differentiate between non-italic and italic scalar
notation, as described in (S6) and (S7). Clearly, from (S20) and (S21), we have xe(t) = xi(t) for e ≤ L, and xe(t) = xij(t)
for L < e ≤ R.

To simplify the presentation, we also define U as an M × R mapping matrix where the ath row of U, i.e., ua =(
ua

1, · · · , ua
L, ua

L+1, · · · , ua
R
)
, is given by

ua =
(

ga
1, · · · , ga

L, ga
1 ga

2, · · · , ga
1 ga

L, ga
2 ga

3, · · · , ga
2 ga

L, · · · , ga
L−1 ga

L

)
. (S22)

Note that ga
i refers to the allele at the ith locus while ga

i ga
j refers to the pair of alleles at locus-pair (i, j) in genotype a.

Next, we define a random vector comprising of the single and double mutant allele frequencies, i.e., X(t) =(
X1(t), . . . , XL(t), X12(t), . . . , X(L−1)L(t)

)
, which from (S18) is related to the random genotype frequency vector by

Xe(t) =
M

∑
a=1

ua
e Za(t) (S23)

where ua
e denotes the eth entry of ua.

Thus, x(t) is a realization of the random vector X(t). Similarly, the allele-level continuous process can be shown to be
related to the genotype-level continuous time process (S13) using the transformation above, and is given as

X̌(τ) =
(

X̌1(τ), . . . , X̌L(τ), X̌12(τ)X̌13(τ), . . . , X̌(L−1)L(τ)
)

:= X(⌊Nτ⌋), τ ≥ 0 (S24)

taken as N → ∞.
The time evolution of the transition probability density, ϕ, of the allele-level diffusion, is governed by the Kolmogorov

forward equation

∂ϕ

∂τ
=

[
−

R

∑
e=1

∂

∂x̌e
d̄e(x̌(τ)) +

R

∑
e=1

R

∑
f=1

∂

∂x̌e

∂

∂x̌ f
C̄e f (x̌(τ))

]
ϕ, (S25)

where C̄(x̌(τ)) and d̄(x̌(τ)) are the diffusion matrix and the drift vector associated with the allele-level diffusion process
that describes the conditional change in the single and double mutant frequencies.
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The diffusion matrix of the allele-level diffusion process is of size R × R and can be partitioned into four sub-matrices,
i.e., the upper left L × L matrix, the upper right L × L(L−1)

2 matrix, lower left L(L−1)
2 × L matrix and the lower right

L(L−1)
2 × L(L−1)

2 matrix. The definition and interpretation of these matrices is given below. Recalling (S22), we note that
the eth element of ua refers to the allele at locus i for 1 ≤ e ≤ L, and to the alleles at locus-pair (i, j) for L < e ≤ R, i.e.,

ua
e =

{
ga

i 1 ≤ e ≤ L
ga

i ga
j L < e ≤ R.

(S26)

The elements of the upper left sub-matrix of the diffusion matrix C̄(x̌(τ)), i.e., 1 ≤ e ≤ L and 1 ≤ f ≤ L, are given as

C̄e f (x̌(τ)) :=
M

∑
a=1

M

∑
b=1

ua
e ub

f C̄ab(ž(τ))

=
1
2

M

∑
a=1

ga
i ga

j
ža(τ)(1 − ža(τ))

N
− 1

2

M

∑
a=1

M

∑
b=1,b ̸=a

ga
i gb

j
ža(τ)žb(τ)

N
+ O

(
1

N2

)

=
1
2

x̌ij(τ)− x̌i(τ)x̌j(τ)

N
+ O

(
1

N2

)
, (S27)

which measure the scaled joint variability between the number of mutants at loci i and j. We note here that the upper left
sub-matrix here is the same as the diffusion matrix in Sohail et al. (2021) where only the evolution of the single mutant
allele frequency was modeled.

Following similar steps, it can be shown that the entries of the upper right sub-matrix of the diffusion matrix C̄(x̌(τ)),
i.e., for 1 ≤ e ≤ L and L < f ≤ R, are given as

C̄e f (x̌(τ)) :=
M

∑
a=1

M

∑
b=1

ua
e ub

f C̄ab(ž(τ))

=
M

∑
a=1

M

∑
b=1

ga
i gb

j gb
kC̄ab(ž(τ))

=
1
2

x̌ijk(τ)− x̌i(τ)x̌jk(τ)

N
+ O

(
1

N2

)
, (S28)

which measures the scaled joint variability between the number of mutants at locus i and double-mutants at loci j and k.
Here x̌ijk(τ) denotes the triple mutant frequency obtained by the transformations (S18) and (S19) with

x̌ijk(τ) := xijk(⌊Nτ⌋), τ ≥ 0. (S29)

The L(L−1)
2 × L lower left sub-matrix is just the transpose of the L × L(L−1)

2 upper right matrix. Similarly, the entries of
the bottom right sub-matrix of the diffusion matrix C̄(x̌(τ)), i.e., L < e ≤ R and L < e ≤ R, are given as

C̄e f (x̌(τ)) :=
M

∑
a=1

M

∑
b=1

ua
e ub

f C̄ab(ž(τ))

=
M

∑
a=1

M

∑
b=1

ga
i ga

j gb
k gb

l C̄ab(ž(τ))

=
1
2

x̌ijkl(τ)− x̌ij(τ)x̌kl(τ)

N
+ O

(
1

N2

)
, (S30)

which measures the scaled joint variability between the number of double-mutants at loci i and j, and double-mutants at
loci k and l, with x̌ijkl(τ) denoting the quadruple mutant frequency with

x̌ijkl(τ) := xijkl(⌊Nτ⌋), τ ≥ 0. (S31)

Note that while the diffusion matrix also depends on the dynamics of the triple and quadruple mutant frequencies, we
only explicitly show the dependence on the single and double mutant frequencies for simplicity of notation.
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We can show that the allele-level drift vector is a linear transformation of the genotype drift vector d̄a(ž(τ)) defined in
(S15). Recalling (S18), (S19), and noting that we can express ha in (S5) as

ha =
R

∑
e=1

ua
e se, (S32)

the eth element of the allele-level drift vector is defined as

d̄e(x̌(τ)) :=
M

∑
a=1

ua
e d̄a(ž(τ))

=
M

∑
a=1

ua
e

(
ža(τ)

(
h̄a −

M

∑
b=1

h̄b žb(τ)

)
+ µ̄

(
M

∑
b=1,dab=1

žb(τ)−
M

∑
b=1,dab=1

ža(τ)

)
− r̄(L − 1)

(
ža(τ)− ψa (ž(τ))

))

=
M

∑
a=1

ua
e

(
ža(τ)

(
1 − ža(τ)

)
h̄a − ža(τ)

M

∑
b=1,b ̸=a

h̄b žb(τ) + µ̄

(
M

∑
b=1,dab=1

žb(τ)−
M

∑
b=1,dab=1

ža(τ)

)
− r̄(L − 1)

(
ža(τ)− ψa

(
ž(τ)

))
= x̌e(τ) (1 − x̌e(τ)) s̄e + ∑

f ̸=e
C̄e f (x̌(τ))s̄ f + µ̄ve(x̌(τ)) + r̄ ηe(x̌(τ)). (S33)

The transformation of the third and the fourth terms on the right hand side of (S33), referred to here as the mutation
term ve(x̌(τ)) and the recombination term ηe(x̌(τ)) respectively, is non-trivial and requires some algebraic manipulation
which we detail below. We note here that the first L entries of d̄e(x̌(τ)) constitute the drift vector of Sohail et al. (2021).
While the transformation of the first L entries mutation and recombination terms were derived in the Supplementary
Information of Sohail et al. (2021), we reproduce these here as they aid in understanding the notation and subsequent
derivation of remaining entries L < e ≤ R of the mutation and recombination terms.

Calculating the mutation term: Here, we show the computations involved with the mutation term in going from the
second last line of (S33) to the last line of (S33). First consider the case 1 ≤ e ≤ L, for which

ve(x̌(τ)) =
M

∑
a=1

ua
e

(
M

∑
b=1,dab=1

žb(τ)−
M

∑
b=1,dab=1

ža(τ)

)

=
M

∑
a=1

ga
i

(
M

∑
b=1,dab=1

žb(τ)−
M

∑
b=1,dab=1

ža(τ)

)

=
M

∑
a=1

(
M

∑
b=1,dab=1

ga
i (1 − gb

i )žb(τ) +
M

∑
b=1,dab=1

ga
i gb

i žb(τ)−
M

∑
b=1,dab=1

ga
i (1 − gb

i )ža(τ)−
M

∑
b=1,dab=1

ga
i gb

i ža(τ)

)

=
M

∑
a=1

M

∑
b=1,dab=1

ga
i (1 − gb

i ) (žb(τ)− ža(τ)) +
M

∑
a=1

M

∑
b=1,dab=1

ga
i gb

i (žb(τ)− ža(τ)) . (S34)

Where the second last line above follows from noting that the first summation on the right side of the third last line can
be decomposed into two parts. The first where genotypes a and b differ only at locus i, and hence mutation of genotype b
to genotype a changes the mutant allele frequency at locus i. The second is where the two genotypes differ from each
other at a locus other than i and hence a mutation from genotype b to a does not effect the mutant allele frequency at
locus i. Similarly, the second summation in the third last line can also be split into two parts. Now, note that

M

∑
a=1

M

∑
b=1,dab=1

ga
i gb

i (žb(τ)− ža(τ)) = 0,

as this quantity represents the mutation of those genotypes b to genotype a where both a and b have the mutant allele at
locus i, while

M

∑
a=1

M

∑
b=1,dab=1

ga
i (1 − gb

i ) (žb(τ)− ža(τ)) = 1 − 2x̌i(τ),

which represents the flow of mutational probabilities between the WT and the mutation allele, i.e., the mutational flux.
Substituting the above two equations back in (S34) yields

ve(x̌(τ)) = 1 − 2x̌i(τ) for 1 ≤ e ≤ L. (S35)
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Now consider the case when L < e ≤ R where we have

ve(x̌(τ)) =
M

∑
a=1

ua
e

(
M

∑
b=1,dab=1

žb(τ)−
M

∑
b=1,dab=1

ža(τ)

)

=
M

∑
a=1

ga
i ga

j

(
M

∑
b=1,dab=1

žb(τ)−
M

∑
b=1,dab=1

ža(τ)

)

=
M

∑
a=1

M

∑
b=1,dab=1

ga
i ga

j (1 − gb
i )(1 − gb

j ) (žb(τ)− ža(τ)) +
M

∑
a=1

M

∑
b=1,dab=1

ga
i ga

j (1 − gb
i )gb

j (žb(τ)− ža(τ))

+
M

∑
a=1

M

∑
b=1,dab=1

ga
i ga

j gb
i (1 − gb

j ) (žb(τ)− ža(τ)) +
M

∑
a=1

M

∑
b=1,dab=1

ga
i ga

j gb
i gb

j (žb(τ)− ža(τ)) . (S36)

Here, the summations on the right side of the last line above represent the net mutational flow to genotypes that contain
alleles (1, 1) at locus-pair (i, j), from those genotypes that have alleles (0, 0), (0, 1), (1, 0) and (1, 1) respectively at
locus-pair (i, j). We note that

M

∑
a=1

M

∑
b=1,dab=1

ga
i ga

j (1 − gb
i )(1 − gb

j ) (žb(τ)− ža(τ)) = 0

M

∑
a=1

M

∑
b=1,dab=1

ga
i ga

j (1 − gb
i )gb

j (žb(τ)− ža(τ)) =
(

x̌01
ij (τ)− x̌11

ij (τ)
)

M

∑
a=1

M

∑
b=1,dab=1

ga
i ga

j gb
i (1 − gb

j ) (žb(τ)− ža(τ)) =
(

x̌10
ij (τ)− x̌11

ij (τ)
)

M

∑
a=1

M

∑
b=1,dab=1

ga
i ga

j gb
i gb

j (žb(τ)− ža(τ)) = 0

where we use the notation x̌10
ij (τ) to refer to mutant with alleles (1, 0) and locus-pair (i, j). The first equation equals zero

as the probability of more than one mutation in a sequence is negligibly small O( 1
N2 ) under the diffusion approximation.

While the last equation equals zero as it represents the mutational flow of all those genotypes where both genotypes a
and b contain the alleles (1, 1) at locus-pair (i, j). Substituting the above in (S36) we have

ve(x̌(τ)) = x̌01
ij (τ) + x̌10

ij (τ)− 2x̌11
ij (τ)

= x̌01
ij (τ) + x̌11

ij (τ) + x̌10
ij (τ) + x̌11

ij (τ)− 4x̌11
ij (τ)

= x̌1
i (τ) + x̌1

j (τ)− 4x̌11
ij (τ)

= x̌i(τ) + x̌j(τ)− 4x̌ij(τ), (S37)

where we have dropped the superscripts in the last line. Thus, from (S35) and (S37) we have

ve(x̌(τ)) =

{
1 − 2x̌i(τ) 1 ≤ e ≤ L
x̌i(τ) + x̌j(τ)− 4x̌ij(τ) L < e ≤ R,

(S38)

where i and j are the subscript indices corresponding to the eth element of x̌(τ).
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Calculating the recombination term: Next we show the computations involved with the recombination term in going
from the second last line of (S33) to the last line of (S33). First consider the case 1 ≤ e ≤ L, for which

ηe(x̌(τ)) =
M

∑
a=1

ua
e

(
(L − 1)

(
ža(τ)− ψa

(
ž(τ)

))

=
M

∑
a=1

ga
i

(
(L − 1)

(
ža(τ)− ψa

(
ž(τ)

))

= (L − 1)x̌i(τ)− (L − 1)
M

∑
a=1

ga
i ψa
(
ž(τ)

)
= (L − 1)x̌i(τ)− (L − 1)

M

∑
a=1

ga
i

M

∑
c=1

M

∑
d=1

Ra,cd žc(τ)žd(τ), (S39)

where the second line follows from (S22), and the last line follows by substituting the definition of ψa
(
ž(τ)

)
from (S2). To

further simplify, let

θcd
i :=

M

∑
a=1

ga
i Ra,cd (S40)

which is the probability that genotypes c and d recombine to form a genotype that has a mutation at locus i. For the
bi-allelic model considered here, there are four possible scenarios for a recombination event: both genotypes c and d
have allele 1 at their respective i-th locus, one of the genotypes has allele 1 while the other has allele 0, or both genotypes
have allele 0 at the i-th locus. We partition the summation term on the right side of (S39) into these four recombination
scenarios as follows

M

∑
a=1

ga
i

M

∑
c=1

M

∑
d=1

Ra,cd žc(τ)žd(τ) =
M

∑
c=1

M

∑
d=1

θcd
i žc(τ)žd(τ)

=
M

∑
c=1

(
M

∑
d=1

gc
i gd

i θcd
i žc(τ)žd(τ) +

M

∑
d=1

gc
i (1 − gd

i )θ
cd
i žc(τ)žd(τ)

)

+
M

∑
c=1

(
M

∑
d=1

(1 − gc
i )gd

i θcd
i žc(τ)žd(τ) +

M

∑
d=1

(1 − gc
i )(1 − gd

i )θ
cd
i žc(τ)žd(τ)

)
. (S41)

Note that

gc
i gd

i θcd
i = gc

i gd
i

gc
i (1 − gd

i )θ
cd
i =

1
2

gc
i (1 − gd

i )

(1 − gc
i )gd

i θcd
i =

1
2
(1 − gc

i )gd
i

(1 − gc
i )(1 − gd

i )θ
cd
i = 0 (S42)

where the factor of 1
2 arises because there is a 50% chance that genotype c (d) with a mutant at locus i and genotype d (c)

with a wildtype at locus i will recombine to a genotype with a mutant at locus i. Hence, we can further write (S41) as

M

∑
a=1

ga
i

M

∑
c=1

M

∑
d=1

Ra,cd žc(τ)žd(τ) =
M

∑
c=1

(
M

∑
d=1

gc
i gd

i žc(τ)žd(τ) +
1
2

M

∑
d=1

gc
i (1 − gd

i )žc(τ)žd(τ)

)

+
1
2

M

∑
c=1

M

∑
d=1

(1 − gc
i )gd

i žc(τ)žd(τ)

= x̌2
i (τ) +

1
2

x̌i(τ)(1 − xi(τ)) +
1
2

x̌i(τ)(1 − x̌i(τ))

= x̌i(τ). (S43)
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Substituting (S43) back into (S39), we see that

ηe(x̌(τ)) = 0 for 1 ≤ e ≤ L. (S44)

Now consider the case when L < e ≤ R. Developing as in (S39), we get

ηe(x̌(τ)) = (L − 1)x̌ij(τ)− (L − 1)
M

∑
a=1

ga
i ga

j

M

∑
c=1

M

∑
d=1

Ra,cd žc(τ)žd(τ). (S45)

To simplify, we define θcd
ij := ∑M

a=1 ga
i ga

j Ra,cd where θcd
ij is the probability that genotypes c and d recombine to form a

genotype which has a double mutant at locus-pair (i, j). We thus have

M

∑
a=1

ga
i ga

j

M

∑
c=1

M

∑
d=1

Ra,cd žc(τ)žd(τ) =
M

∑
c=1

M

∑
d=1

θcd
ij žc(τ)žd(τ) . (S46)

To proceed, it is convenient to first recognize that Ra,cd, and thus θcd
ij , depend on the number of breakpoints occurring in

the recombination event. However, under the small r assumption (S10), it is sufficient to consider only a single breakpoint
since the probability of more than one breakpoint is O( 1

N2 ) (see (S12)). By noting that 1 = 1 − gc
i + gc

i , we proceed
by dividing the two summations in ∑M

c=1 ∑M
d=1 θcd

ij žc(τ)žd(τ) into 16 summations, corresponding to whether there are
mutations at loci i and j in genotypes c and d. Specifically, these 16 summations correspond to the 16 possible allele-pairs
in genotypes c and d, shown in the first and second columns of Table S2. We define the ‘event’ Acd

ij , as the event that
recombination of genotype c and d results in the locus-pair (i, j) both having mutant alleles. Similar to (S41), we may
thus decompose (S46) as

M

∑
c=1

M

∑
d=1

θcd
ij žc(τ)žd(τ) = ∑

c
∑
d

Pr(Acd
ij )(1 − gc

i )(1 − gc
j )(1 − gd

i )(1 − gd
j )žc(τ)žd(τ)

+ ∑
c

∑
d

Pr(Acd
ij )(1 − gc

i )(1 − gc
j )(1 − gd

i )gd
j žc(τ)žd(τ)

+ ∑
c

∑
d

Pr(Acd
ij )(1 − gc

i )(1 − gc
j )gd

i (1 − gd
j )žc(τ)žd(τ) + ∑

c
∑
d

Pr(Acd
ij )(1 − gc

i )(1 − gc
j )gd

i gd
j žc(τ)žd(τ)

+ ∑
c

∑
d

Pr(Acd
ij )(1 − gc

i )gc
j (1 − gd

i )(1 − gd
j )žc(τ)žd(τ) + ∑

c
∑
d

Pr(Acd
ij )(1 − gc

i )gc
j (1 − gd

i )gd
j žc(τ)žd(τ)

+ ∑
c

∑
d

Pr(Acd
ij )(1 − gc

i )gc
j gd

i (1 − gd
j )žc(τ)žd(τ) + ∑

c
∑
d

Pr(Acd
ij )(1 − gc

i )gc
j gd

i gd
j žc(τ)žd(τ)

+ ∑
c

∑
d

Pr(Acd
ij )gc

i (1 − gc
j )(1 − gd

i )(1 − gd
j )žc(τ)žd(τ) + ∑

c
∑
d

Pr(Acd
ij )gc

i (1 − gc
j )(1 − gd

i )gd
j žc(τ)žd(τ)

+ ∑
c

∑
d

Pr(Acd
ij )gc

i (1 − gc
j )gd

i (1 − gd
j )žc(τ)žd(τ) + ∑

c
∑
d

Pr(Acd
ij )gc

i (1 − gc
j )gd

i gd
j žc(τ)žd(τ)

+ ∑
c

∑
d

Pr(Acd
ij )gc

i gc
j (1 − gd

i )(1 − gd
j )žc(τ)žd(τ) + ∑

c
∑
d

Pr(Acd
ij )gc

i gc
j (1 − gd

i )gd
j žc(τ)žd(τ)

+ ∑
c

∑
d

Pr(Acd
ij )gc

i gc
j gd

i (1 − gd
j )žc(τ)žd(τ) + ∑

c
∑
d

Pr(Acd
ij )gc

i gc
j gd

i gd
j žc(τ)žd(τ). (S47)

Now using the Total Probability Theorem, we have

Pr
(

Acd
ij

)
= Pr

(
Acd

ij |1 < bpt. < i
)
× Pr (1 < bpt. < i) + Pr

(
Acd

ij |i < bpt. < j
)
× Pr (i < bpt. < j)

+ Pr
(

Acd
ij |j < bpt. < L

)
× Pr (j < bpt. < L) , (S48)

where bpt. stands for breakpoint., Pr (i < bpt. < j) is the probability that the breakpoint lies between loci i and j, with
i < j, and Pr

(
Acd

ij |i < bpt. < j
)

is the conditional probability that event Acd
ij occurs. These probabilities are given in
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Table S2 Probabilities of recombination events in (S48). The factor of 1
2 arises because there is 50% chance of choosing

genotypes c or d in the recombination process. The denominator is L − 1 as there are only L − 1 possible locations along
the sequence length where a breakpoint (bpt.) can occur.

Genotype c Genotype d Pr
(

Acd
ij |1 < bpt. < i

)
Pr
(

Acd
ij |i < bpt. < j

)
Pr
(

Acd
ij |j < bpt. < L

)
locus-pair (i, j) locus-pair (i, j) ×Pr (1 < bpt. < i) ×Pr (i < bpt. < j) ×Pr (j < bpt. < L)

00 00 0 0 0

00 01 0 0 0

00 10 0 0 0

00 11 1
2

i−1
L−1 0 1

2
L−j
L−1

01 00 0 0 0

01 01 0 0 0

01 10 0 1
2

j−i
L−1 0

01 11 1
2

i−1
L−1

1
2

j−i
L−1

1
2

L−j
L−1

10 00 0 0 0

10 01 0 1
2

j−i
L−1 0

10 10 0 0 0

10 11 1
2

i−1
L−1

1
2

j−i
L−1

1
2

L−j
L−1

11 00 1
2

i−1
L−1 0 1

2
L−j
L−1

11 01 1
2

i−1
L−1

1
2

j−i
L−1

1
2

L−j
L−1

11 10 1
2

i−1
L−1

1
2

j−i
L−1

1
2

L−j
L−1

11 11 i−1
L−1

j−i
L−1

L−j
L−1

Table S2, from which we have

M

∑
c=1

M

∑
d=1

θcd
ij žc(τ)žd(τ) =

M

∑
c=1

M

∑
d=1

Pr
(

Acd
ij

) (
1 − gc

i
)(

1 − gc
j
)

gd
i gd

j žc(τ)žd(τ) +
M

∑
c=1

M

∑
d=1

Pr
(

Acd
ij

)
gc

i gc
j
(
1 − gd

i
)(

1 − gd
j
)
žc(τ)žd(τ)

+
M

∑
c=1

M

∑
d=1

Pr
(

Acd
ij

) (
1 − gc

i
)

gc
j gd

i gd
j žc(τ)žd(τ) +

M

∑
c=1

M

∑
d=1

Pr
(

Acd
ij

)
gc

i gc
j
(
1 − gd

i
)

gd
j žc(τ)žd(τ)

+
M

∑
c=1

M

∑
d=1

Pr
(

Acd
ij

) (
1 − gc

i
)

gc
j gd

i
(
1 − gd

j
)
žc(τ)žd(τ) +

M

∑
c=1

M

∑
d=1

Pr
(

Acd
ij

)
gc

i
(
1 − gc

j
)(

1 − gd
i
)

gd
j žc(τ)žd(τ)

+
M

∑
c=1

M

∑
d=1

Pr
(

Acd
ij

)
gc

i
(
1 − gc

j
)

gd
i gd

j žc(τ)žd(τ) +
M

∑
c=1

M

∑
d=1

Pr
(

Acd
ij

)
gc

i gc
j gd

i
(
1 − gd

j
)
žc(τ)žd(τ)

+
M

∑
c=1

M

∑
d=1

Pr
(

Acd
ij

)
gc

i gc
j gd

i gd
j žc(τ)žd(τ)

= 2 × L − j − i − 1
2(L − 1)

(
x̌ij(τ)− x̌i(τ)x̌ij(τ)− x̌j(τ)x̌ij(τ) + x̌2

ij(τ)
)
+ 2 × 1

2
(
x̌j(τ)x̌ij(τ)− x̌2

ij(τ)
)

+ 2 × j − i
2(L − 1)

(
x̌i(τ)x̌j(τ)− x̌i(τ)x̌ij(τ)− x̌j(τ)x̌ij(τ) + x̌2

ij(τ)
)
+ 2 × 1

2
(
x̌i(τ)x̌ij(τ)− x̌2

ij(τ)
)
+ x̌2

ij(τ)

= x̌ij(τ)−
j − i
L − 1

(
x̌ij(τ)− x̌i(τ)x̌j(τ)

)
. (S49)
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Substituting (S49) together with (S46) back into (S45) we see that

ηe(x̌(τ)) = (j − i)
(
x̌ij(τ)− x̌i(τ)x̌j(τ)

)
for L < e ≤ R. (S50)

Thus, from (S44) and (S50) we have

ηe(x̌(τ)) =

{
0 1 ≤ e ≤ L
(j − i)

(
x̌ij(τ)− x̌i(τ)x̌j(τ)

)
L < e ≤ R,

(S51)

where i and j are the subscript indices corresponding to the eth element of x̌(τ).

Probability of observing the allele trajectory: Given the drift vector and diffusion matrix, we can directly apply (Risken
1989, eq. 4.109) which gives the transition probability density over ∆t generations, valid for small δτ∆t (equivalently
large N

∆t ), as

ϕ(x̌(τ + δτ∆t)|x̌(τ)) ≈
exp

(
− 1

4δτ∆t
(
x̌(τ + δτ∆t)− x̌(τ)− d̄(x̌(τ))δτ∆t

)TC̄(x̌(τ))−1(x̌(τ + δτ∆t)− x̌(τ)− d̄(x̌(τ))δτ∆t
))

(4πδτ∆t)R/2
√

det(C̄(x̌(τ)))
.

(S52)

Thus, the transition probability for a single generation of the original discrete-time discrete-frequency WF process can
(for large N

∆t ) be approximated by

P(x(tk+1)|x(tk)) ≈ ϕ(x(tk+1)|x(tk))
R

∏
e=1

dxe(tk+1) (S53)

where the dxe represent small frequency differences accounting for the quantization of the continuous eth marginal
allele frequency space at each time point. The probability of observing a trajectory of mutant allele frequencies
(x(t1), x(t2), . . . , x(tK)) conditioned on x(t0) is then given by

P
(
(x(tk))

K
k=1 |x(t0)

)
=

K−1

∏
k=0

P(x(tk+1)|x(tk))

≈
K−1

∏
k=0

[
1√

det C(x(tk))

(
N

2π∆tk

)R/2 R

∏
e=1

dxe(tk+1)

]
exp

(
−N

2
S
(
(x(tk))

K
k=0

))
(S54)

where

S
(
(x(tk))

K
k=0

)
=

K−1

∑
k=0

1
∆tk

R

∑
e=1

R

∑
f=1

[xe(tk+1)− xe(tk)− de(x(tk))∆tk]
(

C−1(x(tk))
)

e f

[
x f (tk+1)− x f (tk)− d f (x(tk))∆tk

]
,

which is the desired path integral representation. Note we have defined de(x(tk)) := d̄e(x(tk))
N and (C(x(tk)))e f :=

2 (C̄(x(tk)))e f .

Maximum a posteriori estimate of allele selection coefficients and epistasis terms
The maximum a posteriori (MAP) estimate of the allele selection coefficients and epistasis terms is obtained by solving

ŝ = arg max
s

L
(

s; µ, r, N,
(
x(tk)

)K
k=0

)
Pprior(s), (S55)

where

L
(

s; µ, r, N,
(
x(tk)

)K
k=0

)
=

(
T−1

∏
k=0

1√
det C(x(tk))

(
N

2π∆tk

)R/2 R

∏
i=1

dxi(tk+1)

)
K−1

∏
k=0

exp
(
−N

2
S
((

x(tk)
)K

k=0

))
(S56)

is the (approximate) path-likelihood and

Pprior(s) =
1

(2πσ2)R/2 exp
(
− 1

2σ2 sTs
)

(S57)
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is the assumed prior with σ2 ∈ R. For convenience, we work with the natural logarithm of the above, i.e.,

ln
(
L
(

s; µ, r, N,
(
x(tk)

)K
k=0

))
+ ln

(
Pprior(s)

)
= ln c1 −

N
2

K−1

∑
k=0

S
((

x(tk)
)K

k=0

)
+ ln c2 −

1
2σ2 sTs, (S58)

where c1 and c2 represent terms that are independent of s. Next, we take the vector partial derivative with respect to s
and equate it to zero to find the MAP estimate of s. This gives

0 =
∂

∂s
ln c1 −

∂

∂s
N
2

K−1

∑
k=0

S
((

x(tk)
)K

k=0

)
+

∂

∂s
ln c2 −

∂

∂s
1

2σ2 sTs

=
K−1

∑
k=0

C(x(tk)) [C(x(tk))]
−1 [x(tk+1)− x(tk)− ∆tkC(x(tk))s − µ∆tkv(x(tk))− r∆tkη(x(tk))] + γ s, (S59)

where γ = 1/Nσ2. Solving the above yields the desired MPL estimator (21), i.e.,

ŝ =

[
K−1

∑
k=0

∆tkC(x(tk)) + γI

]−1 [
x(tK)− x(t0)− µ

K−1

∑
k=0

∆tkv(x(tk))− r
K−1

∑
k=0

∆tkη(x(tk))

]
. (S60)

We note that, in practice, it is not required to know the exact values of N or σ2. Rather what is important is that their
product γ has an appropriate strength, and this can be treated as a regularization parameter.

Multiple replicates
The inference framework may be applied to incorporate observations of mutant allele frequencies from multiple
independent replicates. These replicates may be parallel evolutionary experiments or time-series data from distinct
studies. Each replicate represents a unique evolutionary path that may have different initial conditions and/or sampling
parameters, independent from the other replicates. Here we give the specific generalization for the bi-allelic model
with symmetric mutation probabilities, as considered in Materials and Methods. Further extension to multi-allele and
asymmetric mutation probability models is straightforward.

For a scenario with Q replicates, the MAP estimate of the selection coefficients is the solution to

ŝ = arg max
s

L
(

s; µ, N, (x1(t1
k))

K1
k=0, · · · , (xQ(tQ

k ))
KQ
k=0

)
Pprior(s), (S61)

where xq(tq
k) = (xq

1(t
q
k), · · · , xq

L(t
q
k)) is the observed mutant allele frequencies at generation tq

k of replicate q. The likelihood
function admits

L
(

s; µ, N, (x1(t1
k))

K1
k=0, · · · , (xQ(tQ

k ))
KQ
k=0

)
=

Q

∏
q=1

Kq−1

∏
k=0

P
(

xq(tq
k+1)|x

q(tq
k), N, µ, s

)
(S62)

and, as before, the prior is

Pprior(s) =
1

(2πσ2)L/2 exp
(
− 1

2σ2 sTs
)

. (S63)

Using (S54), we obtain the path integral approximation to the likelihood function

L
(

s; µ, N, (x1(t1
k))

K1
k=0, · · · , (xQ(tQ

k ))
KQ
k=0

)
≈

Q

∏
q=1

Kq−1

∏
k=0

1√
det C(xq(tq

k))

(
N

2π∆tq
k

)L/2 L

∏
i=1

dxq
i (t

q
k+1)

 exp
(
−N

2
S
(
(xq(tq

k))
Kq
k=0

))
. (S64)

Substituting this approximation in (S61), we get the MPL estimator of (22), i.e.,

ŝ =

[
Q

∑
q=1

Kq−1

∑
k=0

∆tq
kC(xq(tq

k)) + γI

]−1

×
(

Q

∑
q=1

[
xq(tq

Kq
)− xq(tq

0)− µ

Kq−1

∑
k=0

∆tq
kv(xq(tq

k))− r
Kq−1

∑
k=0

∆tq
kη(x

q(tq
k))

])
, (S65)

where C(xq(tq
k)) is the covariance matrix of the mutant allele frequencies at generation tq

k of the qth replicate, γ = 1/Nσ2

as before, and ∆tq
k = tq

k+1 − tq
k. For each replicate q, the entries of the covariance matrix are computed according to

(16)-(18).
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Asymmetrical mutation probabilities
So far we have assumed the forward and backward mutation probabilities are equal. The MPL framework can easily
accommodate asymmetrical mutation probabilities as was also shown in Sohail et al. (2021) for the additive fitness model
case. Here, we derive the expression of the drift vector of the allele-level diffusion process for a fitness model with
pairwise epistasis terms. The diffusion matrix, being independent of the mutation probability, remains unchanged.

We begin by defining µ01,i and µ10,i as the mutation probabilities, at locus i, of the WT allele mutating to mutant allele
and the mutant allele mutating to the WT allele respectively. Similar to (S10), as N → ∞

µ01,i =
µ̄01,i

N
+ O

( 1
N2

)
, µ10,i =

µ̄10,i

N
+ O

( 1
N2

)
, (S66)

and consequently

µab =
µ̄ab
N

+ O
( 1

N2

)
, (S67)

where µ̄01,i, µ̄10,i, and µ̄ab are constants independent of N.
The ath entry of the drift vector d̄(ž(τ)) characterizing the genotype-level diffusion process in the case of equal

forward and backward mutation probabilities was given by (S15). In the scenario with locus specific unequal forward
and backward mutation probabilities, the ath entry of the drift vector is given as

d̄a(ž(τ)) = ža(τ)

(
h̄a −

M

∑
b=1

h̄b žb(τ)

)
+

(
M

∑
b=1,dab=1

µ̄ba žb(τ)−
M

∑
b=1,dab=1

µ̄ab ža(τ)

)
− r̄(L − 1)

(
ža(τ)− ψa (ž(τ))

)
. (S68)

Following the same steps as before, the eth element of the allele-level drift vector is defined as

d̄e(x̌(τ)) :=
M

∑
a=1

ua
e d̄a(ž(τ))

=
M

∑
a=1

ua
e

(
ža(τ)

(
h̄a −

M

∑
b=1

h̄b žb(τ)

)
+

(
M

∑
b=1,dab=1

µ̄ba žb(τ)−
M

∑
b=1,dab=1

µ̄ab ža(τ)

)
− r̄(L − 1)

(
ža(τ)− ψa (ž(τ))

))

=
M

∑
a=1

ua
e

(
ža(τ)

(
1 − ža(τ)

)
h̄a − ža(τ)

M

∑
b=1,b ̸=a

h̄b žb(τ) +

(
M

∑
b=1,dab=1

µ̄ba žb(τ)−
M

∑
b=1,dab=1

µ̄ab ža(τ)

)
− r̄(L − 1)

(
ža(τ)− ψa

(
ž(τ)

))
= x̌e(τ) (1 − x̌e(τ)) s̄e + ∑

f ̸=e
C̄e f (x̌(τ))s̄ f + Ωe + r̄ ηe(x̌(τ)), (S69)

where ηe(x̌(τ)) is given by (S51) and Ωe is the mutation term in the asymmetrical mutation probabilities scenario. As in
case of symmetrical mutation probabilites, we first consider the case 1 ≤ e ≤ L, for which

Ωe =
M

∑
a=1

ua
e

(
M

∑
b=1,dab=1

µ̄ba žb(τ)−
M

∑
b=1,dab=1

µ̄ab ža(τ)

)

=
M

∑
a=1

ga
i

(
M

∑
b=1,dab=1

µ̄ba žb(τ)−
M

∑
b=1,dab=1

µ̄ab ža(τ)

)

=
M

∑
a=1

(
M

∑
b=1,dab=1

µ̄baga
i (1 − gb

i )žb(τ) +
M

∑
b=1,dab=1

µ̄baga
i gb

i žb(τ)−
M

∑
b=1,dab=1

µ̄abga
i (1 − gb

i )ža(τ)−
M

∑
b=1,dab=1

µ̄abga
i gb

i ža(τ)

)

=
M

∑
a=1

M

∑
b=1,dab=1

ga
i (1 − gb

i ) (µ̄ba žb(τ)− µ̄ab ža(τ)) +
M

∑
a=1

M

∑
b=1,dab=1

ga
i gb

i (µ̄ba žb(τ)− µ̄ab ža(τ)) , (S70)

where the second last line above follows from noting that the first summation on the right side of the third last line can be
decomposed into two parts. The first where genotypes a and b differ only at locus i, and hence mutation of genotype b to
genotype a changes the mutant allele frequency at locus i. The second is where the two genotypes differ from each other
at a locus other than i and hence a mutation from genotype b to a does not effect the mutant allele frequency at locus i.
Similarly, the second summation in the second last line can also be split into two parts. Now, note that

M

∑
a=1

M

∑
b=1,dab=1

ga
i gb

i (µ̄ba žb(τ)− µ̄ab ža(τ)) = 0,
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as this quantity represents the mutation of those genotypes b to genotype a where both a and b have the mutant allele at
locus i, while

M

∑
a=1

M

∑
b=1,dab=1

ga
i (1 − gb

i ) (µ̄ba žb(τ)− µ̄ab ža(τ)) = µ̄01,i (1 − x̌i(τ))− µ̄10,i x̌i(τ), (S71)

which represents the flow of mutational probabilities between the WT and the mutation allele, i.e., the mutational flux.
Here µαβ,i is the per generation probability of allele α mutating to allele β at locus i.

Now consider the case when L < e ≤ R where we have

Ωe =
M

∑
a=1

ua
e

(
M

∑
b=1,dab=1

µ̄ba žb(τ)−
M

∑
b=1,dab=1

µ̄ab ža(τ)

)

=
M

∑
a=1

ga
i ga

j

(
M

∑
b=1,dab=1

µ̄ba žb(τ)−
M

∑
b=1,dab=1

µ̄ab ža(τ)

)

=
M

∑
a=1

M

∑
b=1,dab=1

ga
i ga

j (1 − gb
i )(1 − gb

j ) (µ̄ba žb(τ)− µ̄ab ža(τ)) +
M

∑
a=1

M

∑
b=1,dab=1

ga
i ga

j (1 − gb
i )gb

j (µ̄ba žb(τ)− µ̄ab ža(τ))

+
M

∑
a=1

M

∑
b=1,dab=1

ga
i ga

j gb
i (1 − gb

j ) (µ̄ba žb(τ)− µ̄ab ža(τ)) +
M

∑
a=1

M

∑
b=1,dab=1

ga
i ga

j gb
i gb

j (µ̄ba žb(τ)− µ̄ab ža(τ)) . (S72)

Here, the summations on the right side of the second last line above represent the net mutational flow to genotypes that
contain alleles (1, 1) at locus-pair (i, j), from those genotypes that have alleles (0, 0), (0, 1), (1, 0) and (1, 1) respectively at
locus-pair (i, j). We note that

M

∑
a=1

M

∑
b=1,dab=1

ga
i ga

j (1 − gb
i )(1 − gb

j ) (µ̄ba žb(τ)− µ̄ab ža(τ)) = 0

M

∑
a=1

M

∑
b=1,dab=1

ga
i ga

j (1 − gb
i )gb

j (µ̄ba žb(τ)− µ̄ab ža(τ)) = µ̄01,i x̌01
ij (τ)− µ̄10,i x̌11

ij (τ)

M

∑
a=1

M

∑
b=1,dab=1

ga
i ga

j gb
i (1 − gb

j ) (µ̄ba žb(τ)− µ̄ab ža(τ)) = µ̄10,j x̌01
ij (τ)− µ̄10,j x̌11

ij (τ)

M

∑
a=1

M

∑
b=1,dab=1

ga
i ga

j gb
i gb

j (µ̄ba žb(τ)− µ̄ab ža(τ)) = 0.

Substituting the above in (S72) we have

Ωe = µ̄01,i x̌01
ij (τ)− µ̄10,i x̌11

ij (τ) + µ̄10,j x̌01
ij (τ)− µ̄10,j x̌11

ij (τ)

= µ̄01,i

(
x̌1

j (τ)− x̌11
ij (τ)

)
− µ̄10,i x̌11

ij (τ) + µ̄01,j

(
x̌1

i (τ)− x̌11
ij (τ)

)
− µ̄10,j x̌11

ij (τ). (S73)

Dropping the superscripts from x̌i(τ) and x̌ij(τ) as before, and from (S71) and (S73), we have

Ωe = µ̄01,iv
′
e(x̌(τ))− µ̄10,iv

′′
e (x̌(τ)) + µ̄01,jw

′
e(x̌(τ))− µ̄10,jw

′′
e (x̌(τ)) (S74)

where

v
′
e(x̌(τ)) =

{
1 − x̌i(τ) 1 ≤ e ≤ L
x̌j(τ)− x̌ij(τ) L < e ≤ R

v
′′
e (x̌(τ)) =

{
x̌i(τ) 1 ≤ e ≤ L
x̌ij(τ) L < e ≤ R

w
′
e(x̌(τ)) =

{
0 1 ≤ e ≤ L
x̌i(τ)− x̌ij(τ) L < e ≤ R,
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and

w
′′
e (x̌(τ)) =

{
0 1 ≤ e ≤ L
x̌ij(τ) L < e ≤ R.

Here (S74) is the mutational term in the asymmetrical mutation probabilities case.
Following similar steps as before, one can derive the MPL estimate with asymmetrical mutation probabilities as

ŝe =
R

∑
f=1

[
K−1

∑
k=0

∆tkC(x(tk)) + γI

]−1

e f

[
x f (tK)− x f (t0)− µ01,i

K−1

∑
k=0

∆tkv
′
f (x(tk)) + µ10,i

K−1

∑
k=0

∆tkv
′′
f (x(tk))

− µ01,j

K−1

∑
k=0

∆tkw
′
f (x(tk)) + µ10,j

K−1

∑
k=0

∆tkw
′′
f (x(tk)) − r

K−1

∑
k=0

∆tkη f (x(tk))

]
. (S75)

Robustness
Numerical issues may arise in computing the estimate in (S75) in scenarios with severe data limitations (low number of
samples, large time between samples). These can be addressed by assuming the allele frequency trajectories are piecewise
continuous and the covariance matrix, C(x(tk)), is also a piecewise continuous function. This allows to replace the
summation over time in (S75) with integration, which can then be computed analytically. Specifically, the diagonal terms
of the integrated covariance matrix are

(3 − 2 xe(tk+1)) (xe(tk) + xe(tk+1))

6
− x2

e (tk)

3
, (S76)

and the off-diagonal terms of the integrated covariance matrix are

xe f (tk) + xe f (tk+1)

2
−
(

xe(tk)x f (tk)

3
+

xe(tk+1)x f (tk+1)

3

+
xe(tk)x f (tk+1)

6
+

xe(tk+1)x f (tk)

6

)
, (S77)

where the same mapping holds for indices e and f in (S76) and (S77) as in (16)-(18). The mutation terms are now given as

v
′
f (.) =

{
1 − xi(tk)+xi(tk+1)

2 1 ≤ f ≤ L
xj(tk)+xj(tk+1)

2 − xij(tk)+xij(tk+1)
2 L < f ≤ R

v
′′
f (.) =

{ xi(tk)+xi(tk+1)
2 1 ≤ f ≤ L

xij(tk)+xij(tk+1)
2 L < f ≤ R

w
′
f (.) =

{
0 1 ≤ f ≤ L
xi(tk)+xi(tk+1)

2 − xij(tk)+xij(tk+1)
2 L < f ≤ R,

and

w
′′
f (.) =

{
0 1 ≤ f ≤ L
xij(tk)+xij(tk+1)

2 L < f ≤ R.

While the recombination term η f (.) is 0 for 1 ≤ e ≤ L and given by

(i − j)
( xij(tk) + xij(tk+1)

2
−
( xi(tk)xj(tk)

3

+
xi(tk+1)xj(tk+1)

3
+

xi(tk)xj(tk+1)

6
+

xi(tk+1)xj(tk)

6

))
(S78)

for L < e ≤ R.
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Equivalence of genotype and allele-level analyses
The MAP estimate of the allele selection coefficients and epistasis terms can also be obtained from the genotype path
integral (S17) by solving

ŝ = arg max
s

L
(

s; µ, r, N,
(
z(tk)

)K
k=0

)
Pprior(s) . (S79)

The prior probability, with σ2 ∈ R, is the same as in (S63) and given below for convenience

Pprior(s) =
1

(2πσ2)L/2 exp
(
− 1

2σ2 sTs
)

.

From (S17), the approximate genotype path-likelihood is given by

L
(

s; µ, r, N,
(
z(tk)

)K
k=0

)
=

(
T−1

∏
k=0

1√
det C(z(tk))

(
N

2π∆tk

)R/2 M

∏
a=1

dza(tk+1)

)
K−1

∏
k=0

exp
(
−N

2
S
((

z(tk)
)K

k=0

))
,

with

S
(
(z(tk))

K
k=0

)
=

K−1

∑
k=0

1
∆tk

M

∑
a=1

M

∑
b=1

[za(tk+1)− za(tk)− da(z(tk))∆tk]
(

C−1(z(tk))
)

ab
[zb(tk+1)− zb(tk)− db(z(tk))∆tk] ,

where ∆tk = tk+1 − tk and

da(z(tk)) = za(tk)

(
ha −

M

∑
b=1

hbzb(tk)

)
+ µ

(
M

∑
b=1,dab=1

zb(tk)−
M

∑
b=1,dab=1

za(tk)

)
− r(L − 1)

(
za(tk)− ψa (z(tk))

)
,

with

Cab(z(tk)) =

{
za(tk)(1 − za(tk)) a = b
−za(tk)zb(tk) a ̸= b.

Maximizing the natural logarithm of (S79) and taking the vector partial derivative gives

0 =
∂

∂s
ln c1 −

∂

∂s
N
2

K−1

∑
k=0

S
((

z(tk)
)K

k=0

)
+

∂

∂s
ln c2 −

∂

∂s
1

2σ2 sTs . (S80)

We note that ha can be expressed as

ha =
R

∑
e=1

ua
e se,

and from (S18) and (S22), that the single and double mutant allele frequencies can be expressed

xe =
R

∑
e=1

ua
e za(t). (S81)

Substituting these transformation in (S80) and using the results in (S30), (S33), (S38), and (S51), we obtain

ŝ =

[
K−1

∑
k=0

∆tkC(x(tk)) + γI

]−1 [
x(tK)− x(t0)− µ

K−1

∑
k=0

∆tkv(x(tk))− r
K−1

∑
k=0

∆tkη(x(tk))

]
, (S82)

which is the same estimator as in (S60) obtained from allele-level path integral.

Simulations
Simulations were carried out on a system with Intel Core i7-6700HQ 2.6 GHz processor and 16 GB of RAM.

Numerical values of fitness parameters used in simulations are either given in captions of the figures where feasi-
ble, or listed in Supplementary Table S1 (separate excel file).
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Implementation details of IM
We implemented the method of Illingworth et al. (2014), termed IM, in Matlab R2017b. The performance was tested on
the fitness landscape with all non-zero epistasis terms (Figure 4A). For a direct comparison with MPL, we did not force
IM to search over fitness models of varying sparsity, instead we inferred a fully connected fitness model by providing IM
the identity of loci under selection. This way the performance of IM was not affected by a model mismatch between the
support of the true and inferred fitness landscape.
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