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Abstract
We study Eigen’s model of quasi-species (Eigen in Selforganization of matter and the evo-
lution of biological macromolecules. Naturwissenschaften 58(10):465, 1971), characterized
by sequences that replicate with a specified fitness and mutate independently at single sites.
The evolution of the population vector in time is then closely related to that of quantum spins
in imaginary time. We employ multiple perspectives and tools from interacting quantum sys-
tems to examine growth and collapse of realistic viral populations, specifically considering
excessive mutations in certain HIV proteins. All approaches used, including the simplest
perturbation theory, give consistent results.

Keywords Biological evolution · Quantum spin chains · HIV

1 Introduction

A central concept in population genetics is an idealized fitness F , which (in the absence
of competition, resource limitation, etc.) governs the exponential growth in the number of
individuals N according to (dN/dt) = FN [19]. However, mutations diversify the genetic
make-up (genotype) of the population, and modify its overall fitness. Eigen introduced the
concept of quasi-species to describe the ‘cloud’ of closely related genotypes. Eigen’s model
considers a population composed of a set of sub-populations (labelled {a}), each contributing
Na individuals that coexist in a rapidly evolving larger community of (varying) total size
N = ∑

a Na [13]. Mutations between quasi-species further diversify the composition of the
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population. If the sub-populations {a} are assigned fitness values {Fa}, and mutations from
sub-population a to b occur at rates Wba , the makeup of the population changes over time
according to

dNa

dt
= FaNa +

∑

b �=a

[WabNb − WbaNa] . (1)

In terms of the fractions xa = Na/N , the total population size N = ∑
a Na grows as

(dN/dt) = FN . The mean fitness F = ∑
a Faxa , must be non-negative for the quasi-

population to survive at long times.1

At the molecular level, genetic information is maintained in the sequence of bases of
nucleotides (e.g. in the sequence of the DNA or RNA of a virus). For modeling purposes,
we assume that this information appears as a sequence of L � 1 characters (e.g. one of 4
nucleotides of DNA, or 20 amino acids of a protein). For simplicity of presentation (as well as
practicality, as in the case of HIV proteins described below) we adapt a binary representation,
ni = (0, 1) or σ z

i = (−1,+1), for i = 1, 2, · · · , L , to indicate whether the site i is in its
wild-type (consensus) or a mutated state. In this representation of a genotype, its fitness is
some function of its sequence Fa = F[{σ z

i }] . Note that by our definition of a consensus
sequence, it is possible for a sequence to have a higher fitness than the consensus sequence,
since the consensus is based only on single-site frequencies.

In a simplemodel ofmutations, the state of each site (independently of other sites) changes
away from consensus at the rateμ f , and reverts back to wild-type at the rateμb. Equation (1)
is linear, and its right hand side can be regarded as representing the action of a matrix H on a
(column) vector N containing the sub-population sizes {Na}. For μ f = μb = μ, the action
of mutations on site i can be represented by the Pauli matrix μσ x

i , such that

dN
dt

= −HN , with H = −F[{σ z
i

}] − μ

L∑

i=1

(σ x
i − 1) . (2)

The above equation provides an analogy to the imaginary-time evolution of spins in a quantum
chain, governed by the Hamiltonian H . The fitness function F[{σ z

i }] corresponds to interac-
tions between spins, while mutations are implemented through the transverse magnetic field
μ.

The analogy between Eigen’s quasi-species model and quantum chains has been noted
and explored in a number of references [2–4,22,32,37]. The behaviour of genetic structure
of a quasi-species model and magnetization of the corresponding quantum spin model for
some idealized fitness landscapes (like an Ising chain or a mean field Hamiltonian) have
been studied in Refs. [2,3,37]. Hermisson et al. [22] generalize the binary representation
of DNA sequences to the four nucleotides, leading to a corresponding four state quantum
chain. Saakian and Hu [32] consider mutations between sequences separated by more than
one Hamming distance (see also Ref. [31]). As is well known in physics literature, a quan-
tum system in d dimensions is equivalent to a classical system in d + 1 dimensions with
discretized time. Leuthäusser [24] explored a similar analogy between the Eigen model and
a two dimensional Ising system.

There are, however, important differences between quasi-species evolution, and the
dynamics of a quantum chain (in real time):

• While the Hamiltonian H is real and symmetric, the evolution of N is not unitary, in
that the overall population size N (t) = ∑

a Na(t) changes as a function of time. By

1 This simple mutation–selection model ignores several issues such as competition between different strains,
and stochastic fluctuations. It thus assumes large populations unconstrained by resources.
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contrast, time variation according to (dN/dt) = −i HN preserves the norm of the vector
N, such that {|Na |2} can be regarded as probabilities. The natural set of probabilities for
the evolving population are the proportions {xa(t) = Na(t)/N (t)}.

• Even the symmetry of H is an artifact of the simplification μ f = μb = μ. In the
biological context, it is more likely that forward and mutation rates are not the same,
leading to the replacement of μ(σ x

i − 1) for μ f �= μb with the asymmetric matrix
μ f σ

+ + μbσ
− [32].

Despite these differences, there are aspects of the dynamics that are common to the two
systems, in certain special cases. For quantum systems at low temperature, one is often
interested in the low energy properties, which are determined by the eigenvectors of H
corresponding to the lowest eigenvalues. Similarly, the long-time behavior in the quasi-
species evolution is governed by the few largest eigenvectors of the matrix −H , i.e., the
exact same eigenstates. In particular, the ground state energy is (minus) the mean fitness,
while the ground state vector characterizes the prevalence of mutations in the quasi-species
population. Together, they determine the eventual fate of the quasi-species as described below:
• Error threshold Eigen introduced the concept of an error catastrophe [13] by considering
a fitness function with a single peak on a uniform background (for one or more mutations),
which can be described by

FEigen = Fμ + (F0 − Fμ)

L∏

i=1

1 − σ z
i

2
. (3)

In words, the wild type has fitness F0 while any mutation reduces the fitness to Fμ < F0.
Upon increasing the mutation rate μ, there is a transition when the fraction of population
in the fit state decreases dramatically. This is a genuine singularity (phase transition) in the
limit L → ∞, although the threshold μE

c scales as 1/L (the superscript E in μE
c is used to

distinguish from the fatal mutation rate, discussed next) . More precisely, one can show that
for μ < μE

c = (F0 − Fμ)/L , the fraction x� of the population having � mutations falls off
exponentially as

x� ∼
(

μ

μE
c

)�

, (4)

whereas for μ > μE
c , nearly the entire population has roughly L/2 mutations.

The fitness function in Eigen’s case is of course highly artificial, and questions remain
as to whether the concept of error threshold is applicable to more realistic landscapes (see
also Ref. [16]). Nonetheless, sharp transitions like this, in which the relevant quantity is zero
on one side and non-zero on the other, are in fact quite common in the context of quan-
tum spin systems. Examples include the transition between ferromagnetic and paramagnetic
equilibrium phases [33,36], frozen versus thermalizing spin glasses [5,6,23], and many-body
localization-delocalization transitions [1,27,28].
• Fatal mutation load In Eigen’s model, the quasi-species population can still grow if
Fμ > 0, as each sequence is viable. However, the population can also disappear upon
increased mutation because of the reduction in overall fitness. As an example, consider the
so-called Mount Fuji Landscape [3]:

FMFL = −LF0 − h
L∑

i=1

σ z
i , (5)

specificallywith 0 < F0 < h. Themost fit sequence has afitness L(h−F0), with anymutation
(independently) carrying a load of 2h. With increasing mutation rate, the quasi-species cloud
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acquires more mutations, but (unlike the case of error threshold) remains anchored to the
wild-type state. Since the problem is equivalent to independent quantum spins, it is easy
to identify the ground state as corresponding to all spins tilted along (−h, μ), leading to
the mean fitness of F̄(μ) = L(

√
h2 + μ2 − μ − F0). For any mutation rate μ larger than

μc = (h2 − F2
0 )/2F0, F(μ) is negative and the population will die off. We should also point

out that themutation load can be dramatically altered in asexual populations due to a different
mechanism of clonal interference [17,21], where sequences with high fitnesses compete with
each other.

The above two routes to population collapse have quite distinct signatures in the quantum
perspective. Loss of reproductive capacity in the second case corresponds to the ground state
eigenvalue crossing zero. However, eigenstates of the chain are independent of the choice
of overall constant (the parameter F0) and do not exhibit any change at the fatal mutation
rate μc. Eigen’s error threshold (at μE

c ), however, is accompanied by a dramatic change
(delocalization) of the ground state, even though the ground state eigenvalue may have either
sign depending on F0. The change in eigenstates is a function of the full Hamiltonian (fitness
function), and it is still not entirely clear to what extent actual viral landscapes exhibit such
behavior.

In this work, we instead investigate fatal mutation load and the corresponding rate μc

for different types of HIV proteins, using traditional tools for interacting quantum spins like
perturbation theory and mean field approximation. In the next section we review the process
of arriving at the fitness function (Eq. 2) using the observed prevalence of different sequences.
In Sect. 3, we use perturbation theory and the mean field approximation to arrive at the fatal
mutation rate μc for the HIV proteins.

2 Fitness Using Prevalence Landscape

Several other forms of fitness landscape have been proposed and explored in the literature.We
would like to explore the quantum analogy, identifying mechanisms that lead to population
collapse (e.g. by error catastrophe or high mutation load). To this end, we will focus on a
particular class of landscapes constructed from the prevalence of observed sequences for a
virus.

Themassive size of the space of possible protein sequencesmakes it impossible to estimate
virus prevalence simply by counting sequences. Each site in a protein sequence can be one
of 20 amino acids, and typical protein sequences have lengths on the order of hundreds of
sites. However, the available data typically consists of only a few thousand sequences.

A common approach to this problem is to search for the simplest probability distribution
(bywhichwemean the onewith the largest entropy) over the space of protein sequences that is
capable of reproducing the single site and pairwise frequencies of amino acids in the data [12].
To further reduce complexity, one can represent protein sequences with a reduced or even
binary (zero for ‘wild-type’ and one for ‘mutant’) amino acid alphabet [8,14,30]. In the binary
case, the maximum entropy model capable of reproducing the empirical correlations is an
Ising model with local fields hi and pairwise couplings Ji j . Finding the appropriate fields and
couplings to reproduce the correlations in the data is a challenging statistical problem [12].
For the models presented here, we applied the adaptive cluster expansion method [8,11]
to infer field and coupling parameters that reproduced mutant frequencies and correlations
observed in sequence data from a variety of HIV proteins [7].
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Following the assumption that the most prevalent viral sequences are likely to also have
the highest fitnesses, the prevalence landscape can be used as a proxy for fitness. The simple
connection between prevalence and fitness could be obscured due to strong interactions
betweenHIV and the immune system,which drives the virus to accumulatemutations rapidly.
Careful modeling suggests, however, that prevalence is a good proxy for fitness for viruses
such as HIV, which produces chronic infections and stimulates a diverse range of immune
responses [34]. This assumption is also well-supported by experiments that tested the effects
of different mutations on HIV replication [14,25,26]. These assumptions fail for a non-lethal
seasonal virus such as the flu virus, which due to accumulation of similar immune responses
in the hosts, evolves from year to year in a somewhat directed fashion.

3 EstimatingMean Fitness for HIV Proteins

We study population collapse for a few HIV proteins for which the fitness has been estimated
to have the form [7,10]

F[{σ z
i }] = F0 −

∑

i

hiσ
z
i −

∑

i< j

Ji jσ
z
i σ z

j , (6)

where σi are the Pauli matrices and F0 is a constant. Including the effect of mutations as
described in Eq. 2 leads to a dynamics governed by the Hamiltonian

H = − F[{σ z
i }] − μ

∑

i

(σ x
i − 1)

= − F0 +
∑

i

hiσ
z
i +

∑

i< j

Ji jσ
z
i σ z

j − μ
∑

i

(σ x
i − 1).

(7)

We apply to this Hamiltonian three simple techniques, all common for studying quantum spin
systems: first-order perturbation theory in μ, second-order perturbation theory, and a (non-
perturbative) mean-field approximation. As will be shown, all three give consistent results,
and whatever discrepancies exist can be easily understood.

3.1 First-Order Perturbation Theory

While sophisticated methods from quantum spin chains can certainly be applied to such a
system, in practice we find that standard perturbation theory provides a more than adequate
tool for identifying population collapse.

Let us denote the eigenvalue of the consensus state at μ = 0 by E0. Recall that the
corresponding state is defined to have all σ z

i = −1. To first order in perturbation theory, the
change in eigenvalue is the expectation value of μ

∑
i (σ

x
i − 1) in this state. The expectation

value of σ x
i being zero in any σ z

i eigenstate, the perturbed eigenvalue is simply

E = E0 + μL , (8)

which becomes positive at the mutation rate (remember that E0 must be negative).

μc = − E0

L
. (9)

As discussed in the Introduction, this corresponds to the mean fitness of the population
becoming negative. The first order fatal mutation rate looks superficially similar to μE

c , the
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critical mutation for the case of error threshold (Eq. 3), although in this case population
collapse is due to a fatal mutation load.

3.2 Second-Order Perturbation Theory

The second-order correction to the eigenvalue of the consensus sequence, assuming non-
degenerate levels, gives an expression

E = E0 + μL + μ2
∑

a

1

E0 − Ea
, (10)

where the sum is over configurations with one spin flipped. The fatal mutation rate can then
be found by solving the quadratic equation

E0 + μcL + μ2
c

∑

a

1

E0 − Ea
= 0. (11)

Note from Eq. (10) that if E0 is less than all Ea (as is often the case, and must be if the
consensus is the true ground state), then the second-order terms are necessarily negative. The
eigenvalue is lower than the first-order estimate, and thus the fatal mutation rate is larger.

3.3 Mean-Field Approximation

As an alternative to the perturbative calculations, we also employ a mean field approach
to directly find an approximation to the ground state of the quantum Hamiltonian. In this
procedure the interacting Hamiltonian

H = −F0 +
∑

i

hiσ
z
i +

∑

i< j

Ji jσ
z
i σ z

j − μ
∑

i

(σ x
i − 1) , (12)

is approximated by that describing non-interacting spins, as

HMF = −F0 +
∑

i

he f fi σ z
i − μ

∑

i

(σ x
i − 1) . (13)

The effective field at each site is expressed in terms of the average z component of spins at
connected sites as

hef fi = hi +
∑

j �=i

Ji j 〈σ z
j 〉 where 〈σ z

j 〉 = − hef fi√

(hef fi )2 + μ2
. (14)

To solve the set of coupled equations for {hef fi }, we use an iterative procedure, starting
with the {hi }, alternately computing the expectation values of spins and the corresponding
effective fields until they converge. The mean fitness is finally computed as

F̄MF (μ) = F0 +
N∑

i=1

(√

(hef fi )2 + μ2 − μ

)

, (15)

from which we obtain μc by setting F̄MF (μ) = 0.
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Fig. 1 Fatal mutation rates from mean-field approximation, compared to those from perturbing around the
consensus sequence for five HIV proteins gag (L = 490), integrase (L = 286), nef (L = 206), p24 (L = 231),
and protease (L = 99). The solid line is Eq. (9) assuming constant E0

3.4 Results on Fatal Mutation Rate for HIV Proteins

WeconsideredfiveHIVproteins of variable lengths: p24 (L = 231), gag (L = 490), integrase
(L = 286), nef (L = 206), and protease (L = 99). The Ising on-site and exchange fields
for each protein were estimated previously [7,10] from prevalence of different sequences in
collected data. We then multiplied the prevalence landscape by a factor of β = 0.023/day,
and added an overall constant of F0 = 1.6/day to construct a fitness landscape. These choices
were dictated by typical viral loads in patients, as discussed in Ref. [10].

In all cases, we both performed perturbation theory around the consensus state and applied
the mean-field approximation. It will be important to note that the consensus is not the fittest
state for the gag, nef, and protease proteins, whereas it is the fittest for p24 and integrase.
The resulting μc are shown in Fig. 1.

All estimates for μc are quite consistent. There are some discrepancies, but they are all
as expected. First, it is indeed the case that the first-order estimates are typically lower than
the second-order values (the gag protein is the sole exception out of those considered). For
p24 (μc = 0.007/site/day) and integrase (μc = 0.006/site/day), the consensus sequence
corresponds to the ground state and thus we find quite good agreement between the second-
order and mean-field results. Yet for gag, nef, and protease, the perturbation theory values
only inform us of the mutation rate beyond which the consensus and all similar sequences die
out. Alternate quasi-species having lower energies will survive for slightly larger μ. Since
the mean field theory is able to (approximately) identify the true ground state, regardless of
whether it agrees with the consensus or not, we expect it to predict higher values for μc. This
is indeed what we find for the three proteins in question. We also note that the fatal mutation
rates obtained for those are higher as compared to some obtained for other HIV proteins via
alternate methods (∼ 10−4/site/day) [18,20].
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3.5 Effect of Mutations in Comparison with Experimental Fitness

As discussed in Sect. 2, the prevalence landscape is able to provide us an approximation of
the fitness landscape, and is well supported by experiments. One quantity often measured by
experiments is the replication capacity (RC) of a sequence, which is an empirical estimate
of its growth rate and thus strongly associated with fitness [26]. RC is quantified by the
exponential rate of growth in the number of infected cells over time in experiments, mea-
sured over multiple rounds of infection, for different mutant viruses. Comparing the model
eigenvalues and the RC of some mutant viruses relative to the consensus sequence (for the
gag protein, where multiple measurements are available) reveals a good correlation between
the two. This leads us to conclude that indeed the Ising landscape derived for the proteins
are a good measure of viral fitness (Fig. 2).

In comparisons with experimental growth data (via RC), it may be necessary to include the
effect of mutations on the Ising landscape since the observed growth includes mutations as
well [26]. We use our perturbation theory approach to compare the corrected eigenvalues of
sequences by computing the difference in eigenvalue of a given sequence a and the consensus
sequence (having eigenvalue E0, which is not the lowest eigenvalue for gag protein) using
Eq. 10, given by

ΔEa = Ea − E0 + μ2
∑

b �=a

1

Ea − Eb
− μ2

∑

c �=0

1

E0 − Ec
(16)

where Ea and E0 refer to the unperturbed eigenvalues (μ = 0). Considering a mutation rate
typically expected in HIV proteins μ = 10−5/site/day, and the RC data observed for some
mutations in the gag protein in [26], Fig. 2 shows that the effect of mutations is negligible
when comparing to experimental fitness. However, to see any generic effect of mutations,
we considered a higher mutation rate of 0.001/site/day (which is unrealistic but still below
μc) and we find that the corrections can vary both in the sign and magnitude for the mutants
considered here.

3.6 Role of Epistasis

Mutations at a given site can increase or decrease the overall fitness depending on the inter-
action of the mutated site with other site. This phenomenon of epistasis has been investigated
in different HIV proteins, with evidence for both positive and negative epistasis [9,15,29,38].
Here, we explore the importance of epistasis for fatal mutation rates for population collapse
(Fig. 1), by comparing the fatal rates using fitness landscapes obtained using the same meth-
ods discussed in Sect. 2, and forcing the interaction terms Ji j = 0 (in Eq. 7) for all pairs of
sequences. The comparison is illustrated in Fig. 3. First, we note that the fatal mutation rate
derived using first order perturbation theory (Eq. 9) is independent of Ji j . To see the effect
of interactions, we compare the exact fatal mutation rate in the independent case with the
rate obtained using mean field approximation (Eq. 15) for the interacting fitness landscape.
Assuming that the mean field approximation in the interacting case is close enough to the
exact answer that the distinction for the smaller length proteins with the non interacting
case is real, we find that typically the mutation rate does not change significantly, but there
is a small reduction upon including interactions that points toward negative epistasis. The
decrease can be attributed to the fact that the collapse is determined by the eigenvalue of the
ground state (or close to the consensus state), and typically mutations lower the fitness of the
consensus sequence.
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Fig. 2 Relationship between the predicted eigenvalue difference of some mutants relative to the consensus
sequence and their replication capacities [26], for the gag protein (the NL4-3 sequence is the consensus
sequence). The Pearson’s correlation coefficient r = −0.6812 and p(two tailed) = 2.5 × 10−4, with n = 24.
Correction to eigenvalues using second order perturbation theory (Eq. 16) leads to negligible changes for a
realistic mutation rate μ = 3 × 10−5/site/day. But considering a higher mutation rate (0.001/site/day) shows
that the correction can vary both in the sign and magnitude for different sequences. The r(after) and p(after)
correspond to the higher mutation rate

Fig. 3 Comparison of fatal mutation rates for the interacting (in the mean field approximation) and non
interacting fitness landscapes for HIV proteins gag (L = 490), integrase (L = 286), nef (L = 206), and
protease (L = 99). The first order line (Eq. 9) does not depend on interactions

123



38 Page 10 of 12 S. Shivam et al.

4 Discussion

Herewe applied ideas from interacting quantum systems to studyEigen’s quasispeciesmodel.
Using past estimates for HIV fitness landscapes, which we verified to be in good agreement
with experimental data, we computed the fatal mutation rate μc beyond which viral popu-
lations would be expected to decline due to reduced reproductive capacity. We have found
that first-order perturbation theory works remarkably well in predicting μc. Even though
we do not have an exact result against which to compare, neither higher-order terms nor a
non-perturbative mean-field approximation gives significantly different results.

Note that the perturbative expression in Eq. (9) is superficially similar to Eigen’s orig-
inal result [13], even though the population collapse identified here is not due to an error
catastrophe but rather due to negative mean fitness.

Hart and Ferguson recently investigated the possibility of an error catastrophe for HIV
using estimated fitness landscapes [20]. They found evidence for a phase transition to a
low fitness state in the HIV protein p6, which forms a part of gag. The transition occurs
at a temperature larger than one, which is interpreted as a signal of a mutation rate that is
higher than what is observed in nature. However, their approach does not estimate the critical
mutation rate precisely in terms of a probability of mutation per replication cycle.

In fact, the immune system has special defenses that can force viruses to undergo an “error
catastrophe.”APOBECproteins cause viral hypermutation,which nearly always results in the
production of defective viruses (and for that reason not usefully modelled by the perturbative
treatment here since the mutation rates can be orders of magnitude higher) [35]. However,
APOBEC proteins can be countered by the HIV protein vif, thus allowing replication of the
virus to continue unchecked. It is clear that a detailed understanding of the “phase diagrams”
for HIV proteins will be a useful tool for combating the virus.

Acknowledgements The authors would like to thank the Galileo Galilei Institute in Florence, Italy where a
part of thisworkwas performed. This researchwas performedwhile CLBheld anNRCResearchAssociateship
award at theNational Institute of Standards andTechnology.MK is supported byNSF throughGrantNo.DMR-
1708280.

References

1. Abanin, D.A., Altman, E., Bloch, I., Serbyn, M.: Colloquium: many-body localization, thermalization,
and entanglement. Rev. Mod. Phys. 91(2), 021001 (2019)

2. Baake, E., Wagner, H.: Mutation-selection models solved exactly with methods of statistical mechanics.
Genet. Res. 78(1), 93 (2001)

3. Baake, E., Baake, M., Wagner, H.: Ising quantum chain is equivalent to a model of biological evolution.
Phys. Rev. Lett. 78(3), 559 (1997)

4. Baake, E., Baake,M.,Wagner,H.:Quantummechanics versus classical probability in biological evolution.
Phys. Rev. E 57(1), 1191 (1998)

5. Baldwin, C., Laumann, C., Pal, A., Scardicchio, A.: Clustering of nonergodic eigenstates in quantum spin
glasses. Phys. Rev. Lett. 118(12), 127201 (2017)

6. Bapst, V., Foini, L., Krzakala, F., Semerjian, G., Zamponi, F.: The quantum adiabatic algorithm applied
to random optimization problems: the quantum spin glass perspective. Phys. Rep. 523(3), 127 (2013)

7. Barton, J.P., Kardar, M., Chakraborty, A.K.: Scaling laws describe memories of host-pathogen riposte in
the HIV population. Proc. Nat. Acad. Sci. 112(7), 1965 (2015)

8. Barton, J.P., De Leonardis, E., Coucke, A., Cocco, S.: ACE: adaptive cluster expansion for maximum
entropy graphical model inference. Bioinformatics 32(20), 3089 (2016)

9. Bonhoeffer, S., Chappey, C., Parkin, N.T., Whitcomb, J.M., Petropoulos, C.J.: Evidence for positive
epistasis in HIV-1. Science 306(5701), 1547 (2004)

123



Studying Viral Populations with Tools from Quantum Spin Chains Page 11 of 12 38

10. Chen, H., Kardar, M.: Selforganization of matter and the evolution of biological macromolecules.
bioRxiv:518704 (2019)

11. Cocco, S., Monasson, R.: Adaptive cluster expansion for inferring Boltzmann machines with noisy data.
Phys. Rev. Lett. 106(9), 090601 (2011)

12. Cocco, S., Feinauer, C., Figliuzzi, M., Monasson, R., Weigt, M.: Inverse statistical physics of protein
sequences: a key issues review. Rep. Prog. Phys. 81(3), 032601 (2018)

13. Eigen, M.: Selforganization of matter and the evolution of biological macromolecules. Naturwis-
senschaften 58(10), 465 (1971)

14. Ferguson, A.L., Mann, J.K., Omarjee, S., Ndung’u, T., Walker, B.D., Chakraborty, A.K.: Translating
HIV sequences into quantitative fitness landscapes predicts viral vulnerabilities for rational immunogen
design. Immunity 38(3), 606 (2013)

15. Flynn,W.F., Haldane, A., Torbett, B.E., Levy, R.M.: Inference of epistatic effects leading to entrenchment
and drug resistance in HIV-1 protease. Mol. Biol. Evol. 34(6), 1291 (2017)

16. Galluccio, S.: Exact solution of the quasispecies model in a sharply peaked fitness landscape. Phys. Rev.
E 56(4), 4526 (1997)

17. Gerrish, P.J., Lenski, R.E.: The fate of competing beneficial mutations in an asexual population. Genetica
102, 127 (1998)

18. Gupta, V., Dixit, N.M.: Scaling law characterizing the dynamics of the transition of HIV-1 to error
catastrophe. Phys. Biol. 12(5), 054001 (2015)

19. Haldane, J.B.S.: Mathematical Proceedings of the Cambridge Philosophical Society. In A mathematical
theory of natural and artificial selection, part V: selection and mutation. Cambridge University Press,
Cambridge, vol. 23, pp. 838–844 (1927)

20. Hart, G.R., Ferguson, A.L.: Error catastrophe and phase transition in the empirical fitness landscape of
HIV. Phys. Rev. E 91(3), 032705 (2015)

21. Held, T., Klemmer, D., Lässig, M.: Survival of the simplest in microbial evolution. Nat. Commun. 10(1),
1 (2019)

22. Hermisson, J., Wagner, H., Baake, M.: Four-state quantum chain as a model of sequence evolution. J.
Stat. Phys. 102(1–2), 315 (2001)

23. Jörg, T., Krzakala, F., Kurchan, J., Maggs, A.: Simple glass models and their quantum annealing. Phys.
Rev. Lett. 101(14), 147204 (2008)

24. Leuthäusser, I.: Statistical mechanics of Eigen’s evolution model. J. Stat. Phys. 48(1–2), 343 (1987)
25. Louie, R.H., Kaczorowski, K.J., Barton, J.P., Chakraborty, A.K., McKay, M.R.: Fitness landscape of the

human immunodeficiency virus envelope protein that is targeted by antibodies. Proc. Natl. Acad. Sci.
115(4), E564 (2018)

26. Mann, J.K., Barton, J.P., Ferguson, A.L., Omarjee, S., Walker, B.D., Chakraborty, A., Ndung’u, T.: The
fitness landscape of HIV-1 gag: advanced modeling approaches and validation of model predictions by
in vitro testing. PLoS Comput. Biol. 10, 8 (2014)

27. Nandkishore, R., Huse, D.A.: Many-body localization and thermalization in quantum statistical mechan-
ics. Annu. Rev. Condens. Matter Phys. 6(1), 15 (2015)

28. Pal, A., Huse, D.A.: Many-body localization phase transition. Phys. Rev. b 82(17), 174411 (2010)
29. Parera, M., Perez-Alvarez, N., Clotet, B., Martínez, M.A.: Epistasis among deleterious mutations in the

HIV-1 protease. J. Mol. Biol. 392(2), 243 (2009)
30. Rizzato, F., Coucke, A., de Leonardis, E., Barton, J.P., Tubiana, J., Monasson, R., Cocco, S.: Inference

of compressed Potts graphical models. Phys. Rev. E 101(1), 012309 (2020)
31. Rumschitzki, D.S.: Spectral properties of Eigen evolution matrices. J. Math. Biol. 24(6), 667 (1987)
32. Saakian, D., Hu, C.K.: Eigen model as a quantum spin chain: exact dynamics. Phys. Rev. E 69(2), 021913

(2004)
33. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (2011)
34. Shekhar, K., Ruberman, C.F., Ferguson, A.L., Barton, J.P., Kardar, M., Chakraborty, A.K.: Spin models

inferred from patient-derived viral sequence data faithfully describe HIV fitness landscapes. Phys. Rev.
E 88(6), 062705 (2013)

35. Simon, V., Bloch, N., Landau, N.R.: Intrinsic host restrictions to HIV-1 and mechanisms of viral escape.
Nat. Immunol. 16(6), 546 (2015)

36. Suzuki, S., Inoue, J.I., Chakrabarti, B.K.: Quantum Ising Phases and Transitions in Transverse Ising
Models, vol. 862. Springer, New York (2012)

37. Wagner, H., Baake, E., Gerisch, T.: Ising quantum chain and sequence evolution. J. Stat. Phys. 92(5–6),
1017 (1998)

123



38 Page 12 of 12 S. Shivam et al.

38. Zhang, T.H., Dai, L., Barton, J.P., Du, Y., Tan, Y., Pang, W., Chakraborty, A.K., Lloyd-Smith, J.O., Sun,
R.: Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 protease.
PLOS Genet. (2020). https://doi.org/10.1371/journal.pgen.1009009

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1371/journal.pgen.1009009

	Studying Viral Populations with Tools from Quantum Spin Chains
	Abstract
	1 Introduction
	2 Fitness Using Prevalence Landscape
	3 Estimating Mean Fitness for HIV Proteins
	3.1 First-Order Perturbation Theory
	3.2 Second-Order Perturbation Theory
	3.3 Mean-Field Approximation
	3.4 Results on Fatal Mutation Rate for HIV Proteins
	3.5 Effect of Mutations in Comparison with Experimental Fitness
	3.6 Role of Epistasis

	4 Discussion
	Acknowledgements
	References




