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Bézier interpolation improves the inference of dynamical models from data
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Many dynamical systems, from quantum many-body systems to evolving populations to financial markets, are
described by stochastic processes. Parameters characterizing such processes can often be inferred using informa-
tion integrated over stochastic paths. However, estimating time-integrated quantities from real data with limited
time resolution is challenging. Here, we propose a framework for accurately estimating time-integrated quantities
using Bézier interpolation. We applied our approach to two dynamical inference problems: Determining fitness
parameters for evolving populations and inferring forces driving Ornstein-Uhlenbeck processes. We found that
Bézier interpolation reduces the estimation bias for both dynamical inference problems. This improvement was
especially noticeable for data sets with limited time resolution. Our method could be broadly applied to improve
accuracy for other dynamical inference problems using finitely sampled data.
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I. INTRODUCTION

Stochastic processes are ubiquitous in nature. In biology,
the evolution of genetic sequences can be formulated as a
stochastic process. The Wright-Fisher (WF) model [1], a
discrete-time stochastic process, has been used to study the
evolution of organisms from viruses [2–4] to humans [5].
Models such as the Ornstein-Uhlenbeck (OU) process [6,7]
have been applied to describe a wide range of phenomena,
from the fluctuation of currency exchange rates [8] and cell
migration [9] to driven quantum many-body systems [10].

Appropriate model parameters are needed to accurately de-
scribe the behavior or real systems. To infer such parameters
from data, it is often necessary to compute statistics over a
path, i.e., a complete realization of the stochastic processes.
For example, the restoring force of the OU process can be esti-
mated by taking the ratio of the deviation from the equilibrium
position and the magnitude of the intrinsic fluctuations, both
integrated over a stochastic path [11,12].

However, real data often consists of incomplete, occasional
measurements of a system, which may also be limited by
experimental constraints. This makes it more difficult to ac-
curately estimate model parameters since statistics over the
path must be estimated from incomplete information.

Here, we propose a tractable nonlinear interpolation
framework using Bézier curves [13–16]. In addition to incor-
porating nonlinearity, this approach has the added advantage
of conserving sums of categorical variables. This property
can be especially useful for conserved quantities such as
probabilities.

We applied Bézier interpolation to two example problems:
inferring natural selection in evolving populations through the
WF model and inferring restoring forces for OU processes.

*Corresponding author: jpbarton@pitt.edu

Our method reduces estimation bias and improves the pre-
cision of model inferences. Furthermore, we show that the
autocorrelation function of statistics over a path identifies time
scales over which nonlinear interpolation is particularly effec-
tive, which is consistent with our observations in simulations.
We show that Bézier interpolation can generically improve
solutions of dynamical inference problems by accurately es-
timating statistics over stochastic paths. We expect that this
nonlinear interpolation method can improve a wide range of
dynamical inference problems beyond the specific examples
we consider, such as parameter estimation for stochastic dif-
ferential equations.

II. RESULTS

A. Bézier interpolation

Consider a function x(t ) sampled at discrete times tk for
k ∈ {0, 1, . . . , K}. Then the interpolated value of the function
x(k)

B (t ) between two successive discrete time points tk and tk+1

is given by

x(k)
B (t ) =

P∑
n=0

βn

(
t − tk

tk+1 − tk

)
φ(k)

n

[
(x(tk′ ))K

k′=0

]
. (1)

Here, βn is the nth Bernstein basis polynomial of degree
P, with βn(τ ) = (P

n

)
τ n(1 − τ )P−n � 0. The control points

φ(k)
n [(x(tk′ ))K

k′=0] depend on the ensemble of data points
(x(tk ))K

k=0 and determine the outline of the interpolation
curves.

For simplicity, we consider cubic (P = 3) interpolation, but
our approach can be extended to polynomials of different de-
grees P. We impose the following conditions to ensure that the
segment at each interval [tk, tk+1] ∀k is seamlessly connected,

φ
(k)
0

[
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] = x(tk ), φ
(k)
3
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] = x(tk+1).
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FIG. 1. Bézier interpolation generates smooth curves. Cubic
Bézier curves smoothly interpolate between discretely sampled
frequency trajectories generated from a Wright-Fisher model. Sim-
ulation parameters. L = 50 sites, population size N = 103, mutation
rate μ = 10−3, with simulations over T = 300 generations. Data
points are sampled every 50 generations and interpolated using cubic
Bézier and linear interpolation.

Other internal points {(φ(k)
1 , φ

(k)
2 )}K−1

k=0 are obtained by solving
an optimization problem that reflects continuity and smooth-
ness constraints imposed on the curves (see Supplemental
Material [17]) (Fig. 1).

B. Wright-Fisher model of evolution

The WF model [1] is a classical model in evolutionary
biology. In this model, a population of N individuals evolves
over discrete generations under the influence of random muta-
tions and natural selection. Each individual is represented by
a genetic sequence of length L. For simplicity, we assume that
each site in the genetic sequence is occupied by a mutant (1)
or wild-type (0) nucleotide. There are thus M = 2L possible
genotypes (i.e., genetic sequences) in the population.

The state of the population is described by a genotype
frequency vector z(t ) = (za(t ))M

a=1, where za(t ) represents the
frequency of individuals with genotype a in the population at
time t . In the WF model, the probability of obtaining a geno-
type frequency vector z′ in the next generation is multinomial,
with the succession probability of genotype a

pa(z(t )) ∝ faza(t ) +
∑

b|b�=a

[μbazb(t ) fb − μabza(t ) fa]. (2)

In (2), fa denotes the fitness of genotype a. Individuals with
higher fitness values reproduce more readily than those with
lower fitness values. Here μab is the probability to mutate from
genotype a to genotype b.

Fitness values can be estimated from data by identifying
the fa that are most likely to generate the observed evolu-
tionary history of a population, but this is challenging due
to the enormous size of the genotype space. The problem
can be simplified by assuming that fitness values are additive,
fa = 1 + ∑L

i=1 σ a
i si, where σ a

i = 1 if the nucleotide at site i
in genotype a is a mutant and 0 otherwise. The si are referred
to as selection coefficients, which are positive if the mutation
at site i is beneficial for reproduction and negative if mutation
at site i is deleterious. Similarly, the mutation rate μab can be
simplified to a constant μ if genotypes a and b differ from one
another by only a single mutation and zero otherwise.

Sohail et al. solved this problem analytically in the limit
that the population size N → ∞, while the selection coeffi-
cients si and mutation rate μ scale as 1/N (Ref. [4]). In this

case, the maximum a posteriori vector of selection coeffi-
cients ŝ = (ŝi)L

i=1 is

ŝ =
(∫ tK

t0

dt C(t ) + γ I

)−1

×
[

x(tK ) − x(t0) − μ

∫ tK

t0

dt[1 − 2x(t )]

]
, (3)

where the time of observation runs from t0 to tK . In (3),
x(t ) = (xi(t ))L

i=1 is a vector of mutant frequencies (i.e., the
number of individuals in the population with a mutation at
site i at time t) and C(t ) is the covariance matrix of mutant
frequencies at time t . Here γ is the precision of a Gaussian
prior distribution for the selection coefficients with mean zero
and I is the identity matrix.

Extensive past work has also considered numerical so-
lutions to this problem [3,5,18–22], though the analytical
formula in (3) typically outperforms numerical approaches
[4]. Sohail et al. referred to (3) as the marginal path likeli-
hood (MPL) estimate for the selection coefficients, obtained
by maximizing the posterior probability of an evolutionary
history with respect to the selection coefficients. The MPL
approach has also been extended to consider more complex
evolutionary models [23], missing covariance data [24], and
epidemiological dynamics [25].

C. Bézier interpolation for WF model inference

In practice, Eq. (3) is not straightforward to evaluate be-
cause sequence data comes at discrete times (tk )K

k=0. However,
Bézier interpolation allows us to analytically integrate both
mutant frequency trajectories x(t ) and covariances C(t ), ob-
tained by interpolating frequencies and computing Ci j (t ) =
xi j (t ) − xi(t )x j (t ). Here xi j (t ) is the frequency of individuals
in the population at time t that have mutations at both sites
i and j.

To assess the performance of Bézier interpolation for in-
ferring selection in the WF model, we generated a test data
set by running 100 replicate simulations of WF evolution
with identical parameters [Fig. 2(a)]. We then inferred se-
lection coefficients from this data using MPL with linear
and Bézier interpolation, applied to data sampled at discrete
intervals �t = 75 generations apart. While MPL with linear
interpolation readily distinguishes between beneficial, neutral,
and deleterious parameters, the inferred selection coefficients
are shrunk towards zero. However, parameters inferred using
Bézier interpolation are distributed around their true values
[Fig. 2(b)]. Bézier interpolation reduces estimation bias due
to long intervals between observation intervals by producing
better estimates of underlying covariances (which we will
quantify below). Here we used a regularization strength of
γ = 0.1, but similar results are obtained with different choices
for the regularization (see Supplemental Material [17]).

Next we studied how Bézier interpolation affects our abil-
ity to classify mutations as beneficial or deleterious, which
we evaluated by ranking mutations according to their inferred
selection coefficients. We quantified classification accuracy
using positive predictive value (PPV), PPV = TP/(TP + FP),
where TP and FP are the numbers of true positive and false
positive predictions.
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FIG. 2. Bézier interpolation reduces bias in estimated selection
coefficients. (a) Wright-Fisher simulation with selection and muta-
tion. Each trajectory drawn as a solid line is true complete data,
and filled circles are a subset of the complete data, which is ob-
served every �t = 75 generations and used for selection coefficient
prediction. (b) Selection coefficients for the frequency trajectories
in (a) were estimated by MPL with Bézier and linear interpolation.
MPL with Bézier interpolation greatly reduces estimation bias for
inferred selection coefficients when the time interval between sam-
pled observations is large. Simulation parameters. L = 50 sites with
10 beneficial, 10 deleterious, and 30 neutral mutations with selection
coefficients of s = 0.03, s = −0.03, and s = 0, respectively. Other
parameters of the WF models are the same as in Fig. 1.

The PPV curves for beneficial or deleterious mutations
estimated by MPL with Bézier interpolation are higher than
those with linear interpolation, indicating more accurate clas-
sification [Figs. 3(a) and 3(b)]. This can be understood by
observing reduced overlap between the distribution of inferred

FIG. 3. MPL with Bézier interpolation improves prediction pre-
cision and reduces estimation bias. (a),(b) When the observation time
interval is longer (�t = 75), the PPV curve for Bézier interpolation
is universally higher than the curve for linear interpolation for both
deleterious and beneficial cases. (c) The selection coefficient distri-
butions estimated by MPL with linear interpolation visibly shrank
toward zero and were biased, while distributions estimated by MPL
with Bézeir interpolation did not considerably shrink and have the
mean values near the true selection values.

FIG. 4. Bézier method suppresses interpolation error, especially
for off-diagonal pairwise covariances. (a) Sampling time interval
dependence for interpolation errors E (�t ) for diagonal covariances
and (b) for off-diagonal pairwise covariances. We simulated WF
dynamics using the model described in Fig. 2 and generated data sets
that evolved to the 300th generation for each trial. For example, when
�t = 100, results only use data from t = 0, 100, 200, and 300.
(c) The autocorrelation of off-diagonal covariance elements decays
faster than diagonal ones. To simplify the analysis, we evaluated
the autocorrelation function from generation t = 50. The diago-
nal autocorrelation shows nonmonotonic decay after long times
due to mutant frequencies that approach the frequency boundaries
(i.e., 0 and 1).

selection coefficients for beneficial, neutral, and deleterious
mutations using Bézier interpolation [Fig. 3(c)].

D. Recovery of rapidly decaying correlations
underlies improved accuracy

To understand why MPL with Bézier interpolation yields
more accurate inferences, we studied errors between true and
estimated parameters as a function of the time interval �t
between samples. For arbitrary matrices M we define an error
function E (�t ) = ‖IM(�t ) − IM(1)‖/‖IM(1)‖, normalizing
by the matrix norm ‖IM(1)‖, which corresponds to perfect
sampling for the WF model. Here, IM(�t ) is a time integral
depending on the type of integration (piecewise constant,
linear, and Bézier). For example, for piecewise constant in-
tegration, it will be IM(�t ) = ∑
T/�t�

k=1 M(k�t )�t . In the

discussion below we apply the L2 norm, ‖M‖ =
√

(
∑

i, j M2
i j ),

but other conventions could also be considered.
Using the metric defined above, we found that Bézier in-

terpolation yields better estimates for both the diagonal and
off-diagonal terms of the mutant frequency covariance matrix.
However, the error for the off-diagonal covariances is larger
and increases much more rapidly with increasing �t than the
error for the diagonal variances [Figs. 4(a) and 4(b)]. The
reduction in error for Bézier interpolation is more substantial
for off-diagonal terms compared to diagonal ones. Consis-
tent with this observation, Bézier interpolation yields smaller
improvements in performance for a simple version of MPL
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in which the off-diagonal terms of the integrated covariance
matrix are ignored (see Supplemental Material [17]) [referred
to as the single locus (SL) method in Ref. [4]].

To study the time scale τ on which nonlinear effects be-
come important and Bézier interpolation is advantageous, we
modeled the covariance elements using a simple Langevin
equation, ż(t ) = −λz(t ) + ξ (t ). Here z(t ) represents an ele-
ment of the covariance matrix, λ > 0 is a damping coefficient,
and ξ (t ) is a standard white noise with 〈ξ (t )〉 = 0 and
〈ξ (t )ξ (t + τ )〉 = 2δ(τ ). Following this approach, a linear ap-
proximation should describe the evolution of z(t ) accurately
if λ�t � 1; otherwise, nonlinear nature of the z(t ) becomes
significant and at this point the linear approximation cannot
capture the actual evolution of z(t ).

The damping coefficient λ can be estimated by computing
the autocorrelation function (ACF) of the covariance ma-
trix elements, which can be matched to expectations from
the Langevin equation, 〈x(t )x(t + τ )〉 ∝ exp(−λτ ). In our
simulations, the exponents of the ACF for diagonal and
off-diagonal terms are around λd ∼ 1/325 and λo ∼ 1/50,
respectively [Fig. 4(c)]. When the time between sampling
events is �t = 75, where Bézier interpolation clearly has an
advantage (Fig. 3), for diagonal and off-diagonal covariances
we have λd�t ∼ 0.23 and λo�t = 1.5, respectively. At this
point, λo�t is O(1), indicating the onset of nonlinearity for
off-diagonal terms. Consistent with this observation, for this
value of �t , Bézier interpolation has notably lower error for
off-diagonal covariances than linear interpolation, while er-
rors for the diagonal terms are comparable.

While we focused specifically on the WF model in this
example, the principle of autocorrelations and transitioning
between linear and nonlinear behavior is general. This can
allow us to anticipate the benefit of nonlinear interpolation for
a wide range of problems.

E. Inference of forces in Ornstein-Uhlenbeck processes

We further applied Bézier interpolation to accurately infer
the collective forces in Ornstein-Uhlenbeck (OU) processes,
which plays important roles in various fields such as physics,
biology, and mathematical finance [11,26–28]. Data has been
used to infer the parameters of OU processes describing
phenomena including cell migration [29], coevolution of
species [30], and currency exchange rates [31], to name a few
examples.

We consider the following multivariate OU process:

dX t = JX t dt + �1/2dW t . (4)

Here t is the time variable, L is the number of OU variables,
X t ∈ RL, J ∈ RL×L is a negative semidefinite matrix, � is a
time-independent noise covariance, and W t is a Wiener pro-
cess. We assume that the noise covariance matrix is constant
over the evolution and given. Therefore, the unknown variable
in the SDE in (4) is only the drift term, the interaction matrix J.

One of the most commonly used approaches for inferring
stochastic force in OU processes is maximizing the likelihood
ratio or Radon-Nikodym derivative, which is the ratio of two
probability measures [12,32] and is commonly employed in
fields such as mathematical finance [11]. In our problem, the
likelihood ratio is defined as the probability density obeying

FIG. 5. Bézier interpolation can improve the inference accuracy
of parameters in the OU process. (a) Comparison between true and
inferred OU parameters using piecewise constant, linear, and Bézier
interpolation. Linear regression slope values are included in each
panel. Inferred interaction parameters using Bézier interpolation cor-
respond most closely with the true parameters. (b) Dependence of
the slope between true and inferred parameters on the time sampling
interval �t = 1, shown separately for the (b) diagonal and (c) off-
diagonal interaction parameters of the J matrix. In both diagonal
and off diagonal, the slope values decrease more gradually with
increasing �t for Bézier interpolation than for linear interpolation.

the dynamics of (4) with interactions divided by the proba-
bility density of a “null” model with no interactions. Here,
we inferred OU interactions by directly maximizing the path
likelihood, as described for the WF model. Interestingly, this
leads to exactly the same solution as the one for the standard
likelihood or Radon-Nikdym derivative methods (see Supple-
mental Material [17]).

The interaction matrix Ĵ that best describes the data is
given by

Ĵ =
(

K−1∑
k=0

�x(tk )x(tk )�
)(

K−1∑
k=0

�tkx(tk )x(tk )�
)−1

. (5)

Here (x(tk ))K−1
k=0 is the observed trajectory following the

OU process, �tk = tk+1 − tk is an observation interval, and
�x(tk ) = x(tk+1) − x(tk ) is the amount of change during the
kth interval.

To generate test data, we simulated the OU process us-
ing negative definite interaction matrices (see Supplemental
Material [17]), which follows the construction of a Hopfield
network [33]. Hopfield networks were first constructed to
study associative memory [33] and have since been applied
to inference problems in biology [34–37].

Interaction parameters estimated using Bézier interpola-
tion matched better with the true, underlying parameters
than those inferred using linear interpolation or a piecewise-
constant assumption for the x(t ) [Fig. 5(a)]. In particular, large
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parameters inferred with linear interpolation or the piecewise-
constant assumption tended to be underestimated. In addition,
we found that the slope relating the true and inferred parame-
ters decreases as the sampling interval �t increases. However,
the slope decreases more slowly for Bézier interpolation com-
pared to linear interpolation [Figs. 5(b) and 5(c)]. Overall,
OU interaction parameters inferred using Bézier interpolation
more closely match the true, underlying parameters than those
inferred with simpler interpolation approaches, with gains in
performance that increase as data becomes more limited.

III. DISCUSSION

Here we developed a nonlinear interpolation method us-
ing Bézier curves that improves the inference of dynamical
models from finite data. We applied our approach to two
problems: The inference of natural selection in evolving pop-
ulations and interactions in multivariate Ornstein-Uhlenbeck
processes. Bézier interpolation makes inference more pre-

cise and reduces bias, especially for data sets that are more
sparsely sampled.

Because of its generality, Bézier interpolation could be
broadly applied to give more reliable results for dynamic
inference problems. For example, our approach could be
combined with methods to learn forces from nonequilibrium
dynamics [38,39] or ones used to learn parameters of stochas-
tic differential equations from finitely sampled data [6,11,40].
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