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Methods

Data and code

Raw data and code used in our analysis is available in
the GitHub repository located at https://github.com/
bartonlab/paper-Bezier-interpolation. This repos-
itory also contains Jupyter notebooks that can be run to
reproduce the results presented here.

Optimization of control points for Bézier curves

For simplicity, we will discuss a one-dimensional case,
but the following discussion can easily be extended to ar-
bitrary dimensions. The control points of Bézier curves
are obtained by solving an optimization problem that
is derived from properties we want the Bézier curve to
satisfy. In this study, we impose the C2 smoothness con-
dition, which is that up to the second derivative of the
curve exist. Formally, we can represent these conditions
as follows,

∂τx
(k−1)
B (τ = 1) = ∂τx

(k)
B (τ = 0) , (1)

and,

∂2
τx

(k−1)
B (τ = 1) = ∂2

τx
(k)
B (τ = 0) , (2)

Where, x
(k)
B (τ) is the interpolated function between suc-

cessive discrete time points tk and tk+1 and defined in the
main section. Since these constraints are defined at each
junction of adjacent segments, the number of conditions
is 2(K − 1). On the other hand, the number of control
points is 2K, so we will introduce two more constraints
to make the problem solvable:

∂2
τx

(0)
B (τ = 0) = 0

∂2
τx

(K−1)
B (τ = 1) = 0

.

By rearranging (1) and (2), we can reduce them to the
following difference equations.

ϕ
(k)
1 − 2x(k) = ϕ

(k−1)
2 , (3)

and

− 2ϕ
(k)
1 + ϕ

(k)
2 = ϕ

(k−1)
1 − 2ϕ

(k−1)
2 .

Also, the additional boundary constraints lead to

x(0) − 2ϕ
(0)
1 + ϕ

(0)
2 = 0 ,

ϕ
(k−1)
1 − 2ϕ

(k−1)
2 + x(k) = 0

.

These difference equations are summarized as the fol-

lowing single linear equation by assuming that {ϕ(k)
2 }K−1

k=0
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is a function of {ϕ(k)
1 , x(k)}K−1

k=0 , then by marginalizing

{ϕ(k)
2 }K−1

k=0 from the difference equations,

MBez,Kϕ1 = ψ((x(k))K+1
k=0 ) , (4)

where ϕ1 = (ϕ
(0)
1 , . . . , ϕ

(K)
1 )T , and let

ψ((x(k))K+1
k=0 ) =


x(0) + 2x(1)

2(2x(1) + x(2))
...

2(2x(K−1) + x(K))
8x(K) + x(K+1)

 , (5)

and the matrix M
(K)
B is defined as

M
(K)
B =



2 1 0 . . . . . . . . . . . . 0

1 4 1 0 . . . . . . . . .
...

0 1 4 1 0 . . . . . .
...

... . . .
. . .

. . .
. . . . . . . . .

...
... . . . . . .

. . .
. . .

. . . . . .
...

... . . . . . . 0 1 4 1 0

... . . . . . . . . . 0 1 4 1
0 . . . . . . . . . . . . 0 2 7


. (6)

By solving (4), we get a set of control points, hence
we get a Bézier curve. Interestingly, instead of the
C2 smoothness constraint, assuming a C1 smoothness
condition and imposing a constraint that minimizes the
Euclidean distance of the total trajectory leads to almost
the same linear equation in (4) depending on (6) and (5).

For multivariate frequencies, the Bézier curve can be
obtained by solving each linear equation individually.
Practically, the control points are obtained by operat-

ing the inverse of M
(K)
B to ψ((x(k))K+1

k=0 ) vectors on each
site i ∈ {1, . . . , L}. Thus, we can efficiently perform the
operation and its computational time is fast. Also, the
above arguments are held for the arbitrary q > 1 dimen-
sion case, which is relevant, for example, when consid-
ering the frequency of individuals with multiple possible
nucleotides or amino acids at each site in a genetic se-
quence. Replacing scalar variables with vector variables
leads to exactly the same linear equation in (4).

Integrated frequency and covariance using Bézier
interpolation

In this section, we will show explicit representations of
the integrated mutant frequencies and covariances from
the WF model using Bézier interpolation.

To derive it, we apply the following useful properties
of P -th order Bernstein basis (P = 3 for quadratic Bézier

interpolation), for ∀n ∈ {0, 1, . . . , P},

m(P )
n :=

∫ 1

0

βn(τ)dτ =
1

P + 1
, (7)

and, for ∀n,m ∈ {0, 1, . . . , P},

Q(P )
nm :=

∫ 1

0

βn(τ)βm(τ)dτ =

(
P
n

)(
P
m

)
(2P + 1)

(
2P

n+m

) . (8)

More general properties of the Bernstein basis can be
found in refs. [1, 2].
First, we will get the integrated single mutant fre-

quency at site i, which is shown below,

∆x
(k)
B,i := ∆tk

∫ 1

0

x
(k)
B,i(τ)dτ

= ∆tk

P∑
n=0

(∫ 1

0

βn(τ)dτ

)
ϕ
(k)
i,n

= ∆tk

P∑
n=0

m(P )
n ϕ

(k)
i,n

=
1

(P + 1)

P∑
n=0

ϕ
(k)
i,n ,

(9)

we used the property of Bernstein in (7).
Next, we will get the integrated covariance for different

sites at i and j,

∆C
(k)
ij := ∆tk

∫ 1

0

(
x
(k)
B,ij(τ)− x

(k)
B,i(τ)x

(k)
B,j(τ)

)
dτ ,

(10)
the first term in (10) is the same as in (9) but we replaced
a single interpolated mutant frequency by a matrix that
contains the entire interpolated pairwise mutant frequen-
cies as its elements.
The second term of the covariance in (10) is also

straightforward,∫ 1

0

x
(k)
B,i(τ)x

(k)
B,j(τ)dτ

=

∫ 1

0

(
P∑

n=0

βn(τ)ϕ
(k)
i,n

)(
P∑

m=0

βm(τ)ϕ
(k)
j,m

)
dτ

=

P∑
n=0

P∑
m=0

(∫ 1

0

βn(τ)βm(τ)dτ

)
ϕ
(k)
i,nϕ

(k)
j,m

=

P∑
n=0

P∑
m=0

Q(P )
nmϕ

(k)
i,nϕ

(k)
i,m .

Here we used the property of Bernstein (8) in the last
equality.
In the case of the P = 3, which is the cubic Bézier,

Q(3) matrix will be

Q(3) =


α β γ δ
β γ δ γ
γ δ γ β
δ γ β α

 ,



3

where α = 1/7, β = 1/14, γ = 1/35, δ = 1/140.

Normalization of probabilities

We will show that the interpolation of probability tra-
jectories using the Bézier interpolation is always normal-
ized. We refer to this property as normalizability, here-
after.

First, we will discuss the normalizability of the in-
terpolated probability distribution for a categorical dis-
tribution depending on an arbitrary number of states
q > 1. Next, we denote a probability distribution de-

pending on the data points k and index i as x
(k)
i =

(x
(k)
i,1 , . . . , x

(k)
i,q )

T , and a sum of the all states is normal-

ized, that is
∑q

a=1 x
(k)
i,a = 1 for all k, i.

Then, we can prove that when probability distributions
are interpolated using Bézier’s method, any interpolated

function xB,i(k) = (x
(k)
B,i,1, . . . , (x

(k)
B,i,q)

⊤ is also normal-
ized in arbitrary point τ ∈ [0, 1]:

q∑
a=1

x
(k)
B,i,a = 1 .

For the sake of simplicity, we will omit the site index

hereafter, that is x
(k)
i,a → x

(k)
a . To see the proof, we will

start by showing the normalizability of the control points∑q
a=1 ϕ

(k)
1,a = 1,∀k because this condition immediately

leads to
∑q

a=1 ϕ
(k)
2,a = 1 by plugging it into the (3), and

the following part is straightforward as shown below,

ϕ
(k−1)
2,a = 2x(k)

a − ϕ
(k)
1,a

= 2(1−
q∑

b=1|≠a

x
(k)
b )− (1−

q∑
b=1|≠a

ϕ
(k)
1,b )

= 1− (2

q∑
b=1|̸=a

x
(k)
b −

q∑
b=1|≠a

ϕ
(k)
1,b )

= 1−
q∑

b=1|≠a

ϕ
(k−1)
2,b ,

so
∑q

a=1 ϕ
(k)
2,a = 1 and it is normalized when ϕ

(k)
1 is nor-

malized for k ∈ {1, . . . ,K − 1}. In the case of bound-
aries, time points at k = 0,K, exactly the same argu-
ment holds, which is almost trivial, so we omit to repeat
the same kind of proof.

Therefore, we will show the normalizability of ϕ
(k)
1 as

follows. First, we consider a sum of all the states on the

left hand side in (5),

l.h.s. = MK
B


∑q

a=1 ϕ
(0)
1,a

...∑q
a=1 ϕ

(K)
1,a

 .

Next, we also perform a sum of all the states on the right
hand side in (5),

r.h.s. =

q∑
a=1


x(0) + 2x(1)

2(2x(1) + x(2))
...

2(2x(K−1) + x(K))
8x(K) + x(K+1)

 =


3
6
...
6
9

 .

Then, we immediately notice that

MK
B1 = (3, 6, . . . , 6, 9)⊤ .

Therefore, we find the normalization of the control points∑q
a=1 ϕ

(k)
1,a = 1, ∀k ∈ {0, 1, . . . ,K}.

Finally, we sum the interpolated function using
Bézier’s method at arbitrary τ while considering the nor-
malizability conditions for the control points we have seen
earlier. A sum of the interpolated functions for the all
states a ∈ {1, . . . , q} at any position τ ∈ [0, 1] is:

q∑
a=1

x
(k)
B,i,a =

P∑
l=0

βl(τ) = 1 ,

for the first equality, we used the fact that all the control
points are normalized. For the second equality, we used
the nature of the Bernstein polynomial, a sum of all the
Bernstein bases is one.

Treatment for negative interpolated frequencies and
negative eigenvalues in real data

The sum of q categorical variables using Bézier inter-
polation is conserved, guaranteeing the conservation of
probability density. However, interpolated probabilities
can occasionally exceed the boundaries at 0 and 1, and
eigenvalues of the integrated covariance matrix can be-
come negative. This issue can occur when frequency tra-
jectories are close to the boundaries, variables take one of
the multiple possible states (q > 0), and sampling points
are heterogeneously and sparsely distributed.
To alleviate this problem, we employed the following

treatment: if the time interval ∆tk = tk+1− tk is greater
than a threshold value (set to 50 days for the analysis
of HIV-1 sequence data), then we insert mean frequency
points at the middle time points (tk+1 + tk)/2 such that
x(tk) + x(tk+1)/2 . In addition, for each frequency in-
dividually, we insert mean frequency points at middle
time points when the frequency changes sharply within
one time interval (more than 70% change in the case of
HIV-1 data).
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FIG. 1. Typical Ornstein-Uhlenbeck dynamics. (a)
We generated trajectories using the Euler-Maruyama (EM)
scheme 5000 times with a small increment time step of
dt = 10−3. Each trajectory shows evolution of one of the
elements of a multivariate variable. (b) Evolution of the av-
erage effective energy of the OU process. The process re-
laxed from initial states randomly chosen from {−5, 0, 5}L
to low energy states. We obtained the energy function,
E(t) = −x(t)⊤Jx(t)/2 by running EM simulations 100 times
and averaging the results.

Generate data sets from Ornstein Uhlenbeck
processes.

To generate test data, we simulated the OU process
using negative definite interaction matrices parameter-
ized as J = − α√

P

∑P
ν=1 ξνξ

⊤
ν , where ξν is a pattern gen-

erated from the multivariate normal distribution, ξν ∼
N (0, 1)L, α = O(1/L) is a small parameter, and P is the
number of embedded patterns. This construction ensures
that the OU process does not diverge. We used the Euler-
Maruyama (EM) scheme [3] to simulate the OU process
defined in the main text (Fig. 1a). We simulated 1000
trajectories each for 10 randomly generated interaction
matrices, as described above. We chose L = 50, and
α = 1/L = 0.02 in our simulations. For inference, we
sampled data from the simulations every ∆t = 1.0 units
of time.

Maximum path-likelihood estimation for the
Ornstein-Uhlenbeck process

Based on the stochastic differential equation (STD) of
OU process defined in the main text, we can get the fol-
lowing Fokker-Planck equation [4], which is characterized
by the drift and diffusion terms,

∂

∂t
p(x(t), t) = L p(x(t), t)

L = −
L∑

i=1

i∑
j=1

Jijxj
∂

∂xi
+

L∑
i,j=1

Σij
∂2

∂xi∂xj
.

(11)

The first term corresponds to the drift due to the pair-
wise interaction, and the second term corresponds to the
diffusion due to the white noise.

The FP equation in (11) is effectively a diffusion equa-
tion for probability measures, and the general solution
of the diffusion equation characterized by the drift and
diffusion terms is known and defined as a transition prob-
ability between time points tk and tk+1 = tk +∆tk,

p (x(tk+1), tk+1 | x(tk), tk)

=
1√

∥2πΣ∥∆tk
exp

(
− 1

2∆tk
(∆x(tk)−∆tkJx(tk))

⊤

× Σ−1
t (∆x(tk)−∆tkJx(tk))

)
,

where ∆x(tk) = x(tk+1)−x(tk). The solution of the FP
equation tells that as the time interval approaches zero,
the transition probability goes to the Kronecker delta like
distribution having a finite probability density around
the previous time step. As the time interval increase, the
variance increase as the square root of time, which is the
nature of Brownian diffusion.
The likelihood path function for the OU model can be

defined as a product of the transition probability because
of the independence of the increments of the Wiener pro-
cesses. Hence the log path-likelihood can be written as

S(J|Γ((x(tk))K−1
k=0 ))

=

K−1∑
k=0

(
− 1

2∆tk
(∆x(tk)− Jx(tk))

⊤
Σ−1

t (∆x(tk)− Jx(tk))

)
+ const.

(12)

The log-likelihood corresponds to the action in statistical
physics, where Γ((x(tk))

K−1
k=0 ) = (x(t0), . . . ,x(tK−1)) is

a single trajectory of the stochastic variable.
Since the action in (12) is a convex function of the

coupling matrix, the most probable coupling matrix (i.e.,
the one that maximizes the likelihood of the observed
path) can be obtained by computing the derivative of
the action with respect to the coupling matrix, setting it
to zero, and solving for the coupling matrix.
The derivative of the log-path-likelihood function with

respect to the coupling matrix can be factorized by the
noise covariance because of its time-independence, giving
the following closed-form solution

Ĵ =

(
K−1∑
k=0

∆x(tk)x(tk)
⊤

)

×

(
K−1∑
k=0

∆tkx(tk)x(tk)
⊤

)−1

,

(13)

The single trajectory maximum path likelihood esti-
mate (MPLE) in (13) can be easily generalized to the case
of multiple trajectories or paths by replacing the action
in (12) to an ensemble-averaged action ⟨S(J|Γ)⟩Γ∈ensemble

(or, equivalently, by observing that the likelihood of a
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set of independent paths is equal to the product of the
likelihoods for each individual path). The corresponding
MPLE solution after ensemble averaging is

Ĵ =

(
M∑

m=1

Km−1∑
k=0

∆xm(tk)x
m(tk)

⊤

)

×

(
M∑

m=1

Km−1∑
k=0

∆tkx
m(tk)x

m(tk)
⊤

)−1

,

where m = 1, . . . ,M is the ensemble index.

In fact, by assuming the discretization of the OU pro-
cess defined in the main text, we can estimate sample
size dependence on the MPLE, and it is an unbiased es-
timator, as shown in below,

Ĵ =

(
M∑

m=1

Km−1∑
k=0

∆tk

(
Ĵ∗xm(tk) +W (tk)

)
xm(tk)

⊤

)

×

(
M∑

m=1

Km−1∑
k=0

∆tkx
m(tk)x

m(tk)
⊤

)−1

∼ Ĵ∗ + W̃ /
√
M

M→∞−−−−→ Ĵ∗ .

To derive the scaling of the estimation bias, we used the
assumption of the independence of the white noise.

Cameron-Martin-Girsanov theorem and application
for Ornstein-Uhlenbeck process inference

In this section, we will show that the inference
problem of the OU model can be solved by maximizing
the Radon-Nikodym (RN) derivative or likelihood ratio,
which is facilitated by the Cameron-Martin-Girsanov
(CMG) theorem [4–7]. Since the aim of this section
is only to rationalize the inference approach based on
the CMG theory, we will discuss minimal ingredients of
the CMG theory. A more general and comprehensive
description can be found in refs. [4, 7].

First, let us define the RN derivative. If two proba-
bility measures P and Q satisfy the following conditions,
then the P and Q are said to be mutually absolutely con-
tinuous,

EQ[Y ] = EP[Y Z]

EP[Y ] = EQ[Y/Z] ,

where ∀Y > 0. Z is some random variable, and if it sat-
isfies the condition, EP[Z] = 1, then Z is called Radon-
Nikodym derivative (or likelihood ratio). In fact, it is
nothing more than the changing of the probability mea-
sures

EQ[Y ] =

∫
Y dQ =

∫
Y
dQ
dP

dP = EP

[
Y
dQ
dP

]
.

Therefore, such a random variable Z is denoted as
dQ
dP := Z in general. Since the RN derivative gives
transformation of a probability measure to another
probability measure without obtaining (or even knowing
explicit form of) the probability measure Q, it enables
us to estimate some statistics under the probability
measure Q that are unobtainable directly. For example,
importance sampling falls in this class of problems and
is widely used in computational studies.

Informally speaking, the CMG theorem states that
under some transformation of the drift term in a
Wiener process, a probability measure after the trans-
formation exists and can represent its explicit RN
derivative. So, the CMG theorem provides a way to
estimate the statistics under a probability density after a
general transformation of the drift of the Wiener process.

More formally, the statement of the Cameron-Martin-
Girsanov theorem is that for a Brownian motion {Wt}t≥0

that follows a probability measure P and observable pro-
cess γt that satisfies the following Nikodym condition

EP

[
exp

(
1

2

∫ t

0

γ2
sds

)]
< ∞ , ∀t ≥ 0 ,

the probability measure Q that corresponds to the
stochastic process dXt = −γtdt+ dWt exists and the Q-
process is equivalent to P-Brownian motion by modifying
the Wiener process such that

W̃t = Wt +

∫ t

0

γsds .

We can transform most stochastic processes to this
type of stochastic process. For example, a stochastic pro-
cess given by

dXt = γtdt+ σt(Xt)dWt ,

Here, σt(Xt) is a covariance that can depend not only
on time but also on random variables, so it becomes a
multiplicative noise [7]. Then we transform the stochas-
tic process and drift such that X̃t = σt(Xt)

−1Xt and
γ̃t(Xt) = σt(Xt)

−1γt, then we can get the following
stochastic process

dX̃t = γ̃tdt+ dWt .

These probability measures P and Q are related by the
Radon-Nikodym derivative, which is defined as follows,

dQ
dP

= exp

(
−
∫ t

0

γsdWs −
1

2

∫ t

0

γ2
sds

)
.

Using the CMG theorem, we can estimate statistical
quantities under a more general probability measure Q.
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Since the CMG theorem provides explicit transformation
of probability measures, the maximization of the likeli-
hood ratio can be a substitution of the maximum likeli-
hood,

max
θ

Qθ(A) = max
θ

∫
A

dQθ

dP
(x) dP(x)

≤
∫
A

max
θ

{
dQθ

dP
(x)

}
dP(x) .

Thus, we can estimate the most probable parameters by
maximizing the likelihood ratio.

Now, we can apply the CMG theorem to the inference
problem of the OU model. The CMG theorem lets the
SDE (??) transform into the following

dX̃t = −γ̃tdt+ dWt

where X̃t = Σ−1/2Xt and γ̃t = −Σ−1/2JXt. More gen-
eral transformation can be done by the Lamperti trans-
formation that provides a systematic variable transfor-
mation rule so that a given SDE with multiplicative noise
transforms to another SDE with an additive noise [8].

Therefore, the likelihood ratio of the OU model be-
comes as follows,

dQJ

dP
= exp

(
−
∫ t

0

γ̃⊤
s dX̃s −

1

2

∫ t

0

γ̃⊤
s γ̃sds

)
= exp

(∫ t

0

(JXs)
⊤Σ−1dXs

− 1

2

∫ t

0

(JXs)
⊤Σ−1(JXs)ds

)
,

(14)

where we used the symmetry of the covariance matrix
and definition of the square matrix, Σ1/2Σ1/2 = Σ.

Since the likelihood ratio (14) is a convex function of
the coupling matrix, its derivative with respect to the

coupling matrix gives the equation to solve the maximum
likelihood estimator. So the derivative of the likelihood
ratio is

∂

∂J
log

dQJ

dP
= −

∫ t

0

Σ−1dXsX
⊤
s −

∫ t

0

Σ−1JXsX
⊤
s ds

J→J∗

−−−−→ 0 .

This immediately leads the maximum likelihood ratio es-
timator

Ĵ =

(∫ t

0

dXsX
⊤
s

)(∫ t

0

XsX
⊤
s ds

)−1

.

To derive this solution, we used the fact that the in-
verse of the covariance is independent from the time and
stochastic process.

The important consequence is that the maximum like-
lihood ratio based on the CMG theorem gives exactly
the same solution as in the case of the path-likelihood
maximization shown in (13).

Another derivation of optimal Wright-Fisher
selection coefficients via Cameron-Martin-Girsanov

theorem

In this section, we will rederive the maximum path
likelihood solution of the selection in the WF model using
the CMG theorem.

We can write the Langevin equation for the Wright-
Fisher diffusion as

dXt = (C(Xt)s+ µ(Xt)) dt+
√
C(Xt)dWt .

Applying the formulation of the Radon-Nikodym deriva-
tive to this Langevin equation, we obtain

dQ
dP

= exp

(∫ t

0

(C(xs)s+ µ(xs))
⊤C(xs)

−1
dxs −

1

2

∫ t

0

(C(xs)s+ µ(xs))
⊤C(xs)

−1
(C(xs)s+ µ(xs))ds

)
.

Since the logarithm of the RN derivative is a convex func-
tion, its derivative gives the solution that maximizes the
RN derivative,

∂

∂s
log

dQ
dP

=

∫ t

0

dxs −
∫ t

0

(C(xs)s+ µ(xs))ds

s→s∗

−−−−→ 0 .

Therefore, the solution equivalent to the maximum
path-likelihood solution is obtained.

ŝ =

(∫ t

0

C(xs)ds

)−1 ∫ t

0

(dxs − µ(xs)ds)
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Supplements

Performance of Bézier interpolation on real data

To apply Bézier interpolation to biological sequence
data, we extended the approach described in the main
sections binary variables to multivariates. This is neces-
sary because DNA or RNA sequences have five possible
states at each site, including four nucleotides and a “gap”
symbol, which represents the absence of a nucleotide at
a site that is present in other related sequences.

We applied multivariate Bézier interpolation to study
human immunodeficiency virus (HIV-1) evolution in a
set of 13 individuals [9] (see Methods for details). The
distribution of selection coefficients inferred using Bézier
interpolation is highly correlated with previous analysis
using linear interpolation [10], indicating broad consis-
tency with past results (Fig. 2). However, as we observed
in simulations, inference using Bézier interpolation tends
to result in slightly larger selection coefficients.

Consistent with past analyses [10], we found that the
largest inferred selection coefficients are overwhelmingly
associated with potentially functional mutations. Among
the largest 1% of selection coefficients inferred across
these 13 individuals, around 40% correspond to muta-
tions that help the virus to escape from the host immune
system. This represents a more than 20-fold enrichment
in immune escape mutations among the most highly se-
lected mutations, compared to chance expectations.

In summary, Bézier interpolation applied to real data
leads to the inference of selection coefficients that are
stronger than, but broadly consistent with, those that
are found using linear interpolation. Large inferred selec-
tion coefficients also have clear biological interpretations.
For HIV-1, many highly beneficial mutations correspond
to ones that the virus uses to escape from the immune
system.

Bézier interpolation also has the advantage that it con-
serves sums of categorical variables, which is not typically
guaranteed for standard stochastic regression methods
such as Gaussian process regression/Kriging [12, 13] or
nonlinear approaches such as kernel regression or least
squares [13, 14]. This property is especially useful for
interpolating quantities that can be interpreted as prob-
abilities (e.g., frequency vectors, as we considered above)
or other conserved parameters. A few studies have ap-
plied regression methods to probabilities using logarith-
mic transformations. However, in such cases, regions
around the 0 and 1 boundaries in the probability space
tend to dominate regression results due to the coordinate
transformation [15].

FIG. 2. HIV-1 selection coefficients estimated by
MPL with Bézier interpolation are strongly corre-
lated with those estimated with linear interpolation.
Consistent with simulation results in Fig. 3 in the main text,
Bézier interpolation typically yields larger estimated selection
coefficients. Selection coefficients were obtained for roughly
50 to 900 mutations per individual and sequencing region.
Samples were obtained from 3-9 times per individual, with
7-40 sequences per time point. Sequences were collected fre-
quently early in infection with ∆t ∼ 10 days, stretching to
100-200 days late in infection. Mutation rates from past stud-
ies [11] were used to estimate selection coefficients. The reg-
ularization strength is γ = 10 in both linear and Bézier cases.

Effect of regularization strength γ

We report the influence of the regularization on the
precision of the selection coefficients based on posi-
tive predictive value (PPV) curves. In this test, we
chose the following different regularization values γ ∈
{10−3, 0.1, 1, 5, 10}. Through the all tests, we fixed the
sampling interval as ∆t = 75. For the other parameters,
we use the same parameters that are used in the main
section.

Supplementary Fig. 3 shows how inference accuracy
depends on the regularization strength for MPL using dif-
ferent interpolation methods: piece-wise constant, linear,
and Bézier interpolation.

In the case of the small to medium regularization val-
ues (γ = 10−3, 0.1, 1), PPV curves using the Bézier in-
terpolation are significantly higher than the PPV curves
using other interpolation methods. As the regularization
value increases, the difference between the PPV curves
for linear and Bézier interpolations becomes smaller.

Supplementary Fig. 4 shows that MPL with Bézier
interpolation outperforms MPL with linear interpolation
for any regularization strength γ. The best PPV curves
of MPL with linear interpolation are still lower than the
majority of PPV curves for MPL using Bézier interpola-
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tion. Moreover, although a large regularization improves
the PPV curves of MPL with linear interpolation, due to
the strong regularization effect, the estimated selection
coefficients are strongly biased and are underestimated
as shown in Supplementary Fig. 5.

Effect of sampling interval ∆t

Here, we discuss the effects of the sampling interval ∆t
on the different interpolation methods in detail. In this
study, the model parameters for the population size and
mutation rate are the same as in the main text, and the
regularization coefficient is fixed as γ = 0.1.
Supplementary Fig. 6 shows PPV curves for esti-

mated selection coefficients using MPL with piece-wise
constant, linear, and Bézier interpolation depending on
various sampling intervals ∆t ∈ {1, 10, 30, 75, 100}.
For ∆t = 1, 10, there is no difference among these

methods. However, when ∆t = 30, the PPV curves for
the piecewise constant case deteriorate compared with
the other methods and the ones for the linear and Bézier
interpolations are indistinguishable. This is consistent
with the argument in the main section: the characteristic
time scale, γ∆t, is not so large that nonlinear effects are
noticeable, hence PPV curves for the linear and Bézier
interpolation are indistinguishable.
In the ∆t = 75 case, the PPV curves of the MPL with

Bézier interpolation are systematically higher than the
cases of MPL with linear interpolation, hence MPL with
Bézier interpolation outperforms other approaches.
In general, as the time interval increases, Bézier inter-

polation has a greater advantage in capturing the under-
lying dynamics of trajectories (Supplementary Fig. 6).
However, for large enough time gaps, all interpolation
methods suffer because data is sampled too sparsely to
reveal any information about the underlying dynamics.
For large enough ∆t, there is no connection between the
covariances at consecutively sampled points, and “tra-
jectory information” is no longer contained in the data.
This is also consistent with the negligible size of the auto-
correlation for off-diagonal covariances at very large time
gaps.
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FIG. 3. Across a wide range of regularization values, Bézier interpolation achieves more accurate inference than
linear interpolation. (a.1) PPV curves for beneficial selection coefficients using γ = 10−3. Other conditions are the same as
in the main text. (a.2) PPV curves for deleterious coefficients using γ = 10−3. (b), (c), (d) the same type of figures but using
γ = 1.0, γ = 5.0 and γ = 10.0. MPL with linear interpolation is sensitive to the regularization strength, and larger regularization
is necessary to make more precise inferences. However, the most accurate PPV using MPL with linear interpolation (γ = 30.0)
has almost the same performance as the least accurate inferences using MPL with Bézier interpolation (see Supplementary
Fig. 4). Moreover, the larger regularization induces a strong estimation bias, as shown in Supplementary Fig. 5.

Positive semidefiniteness of the interpolated
covariance

The eigenvalues of the covariance matrix are strictly
non-negative. This positive semi-definiteness is an es-
sential property of the covariance matrix and is practi-
cally important. We numerically confirmed the positive
semidefiniteness of interpolated covariance matrices us-
ing the Bézier interpolation.

To evaluate the positive semidefiniteness, we generated
a test data set by running the WF model 100 times. The
dependent parameters of the WF model are the same as
the main text. Then, we estimated integrated covariance
matrices and their covariance matrix eigenvalues for dif-
ferent interpolation methods and different sampling in-
tervals.

In either interpolation method, the eigenvalue distri-
bution of the integrated covariance matrix showed little
change, and only positive eigenvalues were observed in
each case (Supplementary Fig. 7).
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FIG. 4. In a wide range of regularization, MPL with Bézier interpolation achieves higher PPVs than MPL with
linear interpolation. Here we show PPV curves between rank 60 and 900, where changes due to the different regularization
values γ = 10−3, 0.1, 1.0, 5.0, 10.0 and 30.0 are most noticeable. PPV curves of MPL with Bézier interpolation maintain high
values stably. In contrast, PPV curves of MPL with linear interpolation are sensitive to the choice of the regularization strength
and tend to be lower than those for MPL with Bézier interpolation. In the linear interpolation case, larger regularization yields
higher the PPV curves, but also larger estimation bias.

FIG. 5. MPL with Bézier interpolation reduces estimation bias in a wide range of regularization, and small
regularization is needed to avoid strong estimation bias. (a) Distribution of inferred selection coefficients using a strong
regularization γ = 10. Other conditions are the same as in the main text. (b) Estimated selection coefficients using a weak
regularization γ = 10−3. Smaller regularization γ = 10−3 reduces estimation bias, especially for MPL with linear interpolation.

Selection coefficient inference without off-diagonals
of integrated covariance elements

As shown in the main text, Bézier interpolation is bet-
ter than linear interpolation in the sense of the more ac-

curate reconstruction of the covariance matrix depend-
ing on perfectly observed trajectories (when the sam-
pling interval ∆t = 1) from the covariance matrix de-
pending on “sparsely” observed trajectories, especially
for the “off-diagonal” elements (corresponding to pair-
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FIG. 6. As the sampling interval increases, the advantage of the Bézier interpolation becomes more notable.
(a.1) PPV curves for beneficial selection coefficient inference using the sampling interval ∆t = 1, using MPL with Bézier,
linear, and piece-wise constant interpolations. Other conditions are the same as in the main text (γ = 0.1, N = 103, and
µ = 10−3) (a.2) PPV curves for deleterious selection coefficient inference using ∆t = 1. Subplots, (b), (c) and (d) are the
same type of figures but for ∆t = 30, 75, and 100, respectively. As the sampling interval increases, the inference accuracy
decreases in the PPV sense. However, inferences using Bézier interpolation degrade more slowly than other methods. For the
longest sampling interval (∆t = 100), consecutive time points are poorly correlated. As a result, none of the interpolation
methods can completely accurately infer selection coefficients, and hence the PPV curves roughly converge.

wise covariances Cij = xij − xixj , with i ̸= j) of the
integrated covariance matrix. On the other hand, the
difference between linear and Bézier interpolation for the
“diagonal” elements (variance Cii = xi(1− xi)) was rel-
atively minor. To understand how exactly this obser-
vation is associated with the accuracy of the selection
coefficients, we examine the effect of the off-diagonal en-
tries of the integrated covariance matrix on the selection
coefficients in this section.

Supplementary Fig. 8 shows the inference accuracy
for both deleterious and beneficial mutations using MPL
and the single locus (SL) method, a simplified inference
method that ignores the off-diagonal of the integrated
covariance matrix.

The PPV of MPL with Bézier interpolation achieves
systematically higher values than the PPV of MPL with

linear interpolation. However, the difference between lin-
ear and Bézier interpolation becomes unclear for infer-
ences using SL. Thus, the main reason MPL with Bézier
interpolation can infer better than MPL with linear in-
terpolation is the accurate estimation of off-diagonal co-
variances (including pairwise frequencies).
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FIG. 7. Covariance matrix with Bézier interpolation maintains positive semidefiniteness. Comparison of the
minimum eigenvalue distributions of the integrated covariance matrices: As the ∆t increases, the minimum eigenvalues are
smaller, but they remain nonnegative values. Thus, all the integrated covariances are positive definite.

FIG. 8. Improvement of the selection inference accuracy is due to the accurate restoration of pairwise
frequencies. PPV curves for (a) deleterious and (b) beneficial selection coefficients using MPL methods. The sampling
interval is fixed as ∆t = 75. PPV curves for (c) deleterious and (d) beneficial selection coefficients, but using the single locus
(SL) method, a simplified version of MPL which sets off-diagonal elements of the covariance matrix to zero. Bézier interpolation
improves the precision of MPL, but the choice between linear and Bézier interpolation does not significantly affect the accuracy
of SL. This implies that the accurate estimation of pairwise frequencies (corresponding to off-diagonal covariances) improves
selection inference accuracy.

Ornstein-Uhlenbeck process inference comparison

In this section, we report a more detailed analysis of
the estimated coupling parameters of OU processes. The
input data sets for the inference are the same as in the
main section. To compare the inference accuracy between
various inference methods, besides the path-likelihood-

based methods, we included mean-field theory-based in-
ference. In this approach, the effective solution is given
by the inverse of the integrated covariance matrix, which
effectively predicts interaction matrices for input data
following an equilibrium distribution [16].

Supplementary Fig. 9 shows comparisons of a true
interaction matrix and estimated interactions. The ac-
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curacy of the path-likelihood-based methods is signifi-
cantly better than the the inverse of the covariance ma-
trix in terms of Pearson’s correlation and linear regres-
sion’s slope. This is an anticipated result since the in-
put data sets were generated from the relaxation pro-
cesses, and the probability distributions that character-
ize these dynamics are in non-steady states. Therefore,
MPL methods outperform inference methods assuming
equilibrium states.

The path-likelihood-based inference method with
Bézier interpolation achieves the best inference accuracy
for both diagonal and off-diagonal interaction matrix el-
ements in terms of Pearson’s correlation coefficients and
regression slope values.

Supplementary Fig. 10 shows sampling interval de-
pendence for Pearson’s correlation coefficients between
true interaction matrices and inferred interaction matri-
ces. The input data sets and conditions of the inferences
are the same as the main text. As the sampling inter-
val regime increases, the difference between Pearson’s r
of linear and Bézier interpolations becomes more pro-
nounced, and the inferences using Bézier interpolation
achieve higher Pearson’s r values among all sampling in-
tervals.

[1] Eid H Doha, Ali H Bhrawy, and MA Saker. Integrals
of bernstein polynomials: an application for the solution
of high even-order differential equations. Applied Math-
ematics Letters, 24(4):559–565, 2011.

[2] Ahmet Altürk. Application of the bernstein polynomials
for solving volterra integral equations with convolution
kernels. Filomat, 30(4):1045–1052, 2016.

[3] Daniel T Gillespie. Exact numerical simulation of the
ornstein-uhlenbeck process and its integral. Physical re-
view E, 54(2):2084, 1996.

[4] Hannes Risken. The Fokker-Planck Equation: Methods of
Solution and Applications. Springer-Verlag, 2nd edition,
1989.

[5] Robert H Cameron and William T Martin. Transforma-
tions of weiner integrals under translations. Annals of

Mathematics, pages 386–396, 1944.
[6] Igor Vladimirovich Girsanov. On transforming a cer-

tain class of stochastic processes by absolutely contin-
uous substitution of measures. Theory of Probability &
Its Applications, 5(3):285–301, 1960.

[7] Robert Shevilevich Liptser and Al’bert Nikolaevich Shiri-
aev. Statistics of random processes: General theory, vol-
ume 394. Springer, 1977.

[8] Stefano M Iacus. Simulation and inference for stochas-
tic differential equations: with R examples, volume 486.
Springer, 2008.

[9] Michael KP Liu, Natalie Hawkins, Adam J Ritchie, Vi-
taly V Ganusov, Victoria Whale, Simon Brackenridge,
Hui Li, Jeffrey W Pavlicek, Fangping Cai, Melissa Rose-
Abrahams, et al. Vertical t cell immunodominance and
epitope entropy determine hiv-1 escape. The Journal of
clinical investigation, 123(1), 2012.

[10] Muhammad Saqib Sohail, Raymond HY Louie,
Matthew R McKay, and John P Barton. Mpl re-
solves genetic linkage in fitness inference from complex
evolutionary histories. Nature biotechnology, 39(4):472–
479, 2021.

[11] Fabio Zanini, Johanna Brodin, Lina Thebo, Christa
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FIG. 9. Path-likelihood-based inference method with Bézier interpolation achieves the best inference accuracy.
Comparison of true and inferred OU process interaction matrices. Mean-field based methods were used for (a.1) diagonal and
(a.2) off-diagonal elements of the interaction matrix. Panels (b), (c), and (d) are the same type of plots, but using the
path-likelihood-based inference with piecewise constant, linear, and Bézier interpolation, respectively. Among all the methods,
inference with Bézier interpolation achieves the highest accuracy in terms of Pearson’s correlation coefficient and regression
slope value.
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FIG. 10. As the sampling interval increases, the advantage of Bézier interpolation becomes more pronounced.
Dependence of Pearson’s correlation coefficients for (a) diagonal and (b) off-diagonal interaction matrices on the sampling
interval. Pearson’s correlation coefficients for Bézier interpolation are significantly higher than the ones for linear interpolation,
especially when the sampling interval is large.
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