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1 Sampling Hint[~s] and low-dimensional representation using

PCA

Let ~sn 2 {0, 1}1xN be an arbitrary sequence1 in an equilibrium ensemble of M sequences sampled

according to H
int

[~s] using the Metropolis Monte Carlo (MC) algorithm [1]. This ensemble is com-

prised of sequences from six independent realizations of 108 steps each, where each step constitutes

an attempt to flip a single site. We eliminated the first 10

4 steps for equilibration, and recorded

every ith state such that mod(i, 5N) = 0. The sequences in the MC ensemble (also referred to

as “equilibrium ensemble") capture the statistical properties of the intrinsic fitness landscape as

encoded by H
int

[~s]. The “mean sequence" of the MC ensemble is defined as,

~sav =

1

M

MX

n=1

~sn (S1)

Here, ~sav 2 R1xN . The sample covariance matrix C 2 RNxN is defined as,
1
Note that N = 132 for p17
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�
sn
j

� sav
j

�
(S2)

Principal component analysis (PCA) is a linear dimensionality reduction/ visualization tech-

nique that seeks to find a subspace of lower dimensionality within the original, high dimensional

feature space such that the projected variance in the new subspace is maximized. The reader is

referred to refs. [2] and [3] for standard formulations of PCA and mathematical details. The new

subspace is typically defined by fewer mutually-orthogonal unit vectors ~ui (i = 1, 2, 3, . . . k and

k ⌧ N ), each of which is a linear combination of the orthonormal basis vectors defining the orig-

inal feature space. In our problem, the latter are unit vectors in RN . It can be shown that the

“principal directions" ~ui 2 RNx1 (i = 1 , 2 , 3, . . . k) are eigenvectors of C corresponding to the k

largest eigenvalues �
i

(i = 1 , 2 , 3, . . . k).

The amount of variance captured by ~ui can be straightforwardly estimated as
⇣
~ui

⌘
T

C~ui

= �
i

.

Consequently, the fraction of variance captured by principal direction ~ui is �iPN
j=1 �j

. For an arbitrary

sequence ~s, its projections on to the principal directions are referred to as its “principal components"

or PCs. Thus, PC1[~s] = ~s. ~u1, PC2[~s] = ~s. ~u2 and so on. The number of principal directions k

necessary for an effective low-dimensional description of the dataset is determined heuristically by

examining the eigenvalue spectrum of C for a “spectral gap", when �
i

are arranged in a descending

order (cf. Fig. S1). We use the first two principal components PC1 and PC2 to visualize the

evolution of viral strains in our quasispecies simulations. Cumulatively, the top two modes capture

about 30% of the variance in the data generated from the MC sampling. This may be because the

underlying geometry of the fitness landscape is highly non-linear. PCA approximates the underlying

manifold as a linear combination of hyperplanes. When the underlying manifold is highly non-linear,

it is known that PCA overestimates the effective dimensionality[4]. Using a highly coarse grained

representation through PC1 and PC2, however, is not a serious problem for this work because our

primary purpose is visualization, not dimensionality reduction. We compute statistical quantities

like mutational probabilities and correlations using the full, original representation of sequences.

The following section provides evidence that PC1 and PC2 separate the regions of sequence space
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defined by subtype B.
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Figure S1: The top 30 eigenvalues of the covariance matrix C computed from the equilibrium
ensemble. A spectral gap between �2 and �3 is clearly discernible.

2 Visualizing the prevalence landscape

Each N -bit binary sequence ~s in the MC ensemble can be converted into a two dimensional repre-

sentation [PC1, PC2] by computing its projection onto the top two principal eigenvectors, namely.

In this manner, the embedding of every sequence in the MC ensemble was computed and used to

generate probability histograms across the [PC1, PC2]-plane using a square mesh. The probabilities

were converted to analogues of free energy using the statistical mechanical relation,

A(x, y) = � logP (x, y) + const. (S3)

where A(x, y) is the “Helmholtz free energy" associated with the cell centered on (x, y) in the

[PC1, PC2]-plane and P (x, y) is the sample probability of a sequence occupying this point. The free

energy values were converted to contours using the contourf function in Matlab R�. The resulting

representation in Fig. S2 shows three fitness peaks corresponding to regions with low free energy

values. Upon projecting the subtype B sequences in the MSA (black dots in Fig. S3) obtained from
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the Los Alamos HIV Database[5], we find that barring 3 cases (out of 2474), all the sequences are

localized around a single fitness peak. These also include the sequences that were used to compute

the parameters {J
ij

, h
i

} of H
int

[~s] in Ferguson et. al. [6]. The mutational probabilities hs
i

i, hs
i

s
j

i,

hs
i

s
j

s
k

i computed from sequences generated through unrestricted sampling of H
int

[~s] do not agree

with these quantities computed from the MSA containing subtype B sequences (data not shown).

As argued in Ferguson et. al. [6], the additional basins are extrapolations of the fitted non-linear

model. When we restricted sampling to the primary basin around the peak corresponding to subtype

B by means of reflective boundary conditions in the PC-space (Fig. S2), we find that mutational

probabilities are accurately reproduced (Fig. S4). As described in the main text, excursions out

of the primary basin are also restricted in the quasispecies simulations (cf. Appendix B). This is

equivalent to considering excursions outside the primary basin as unfit and killing these sequences.

Typical sequences in the extrapolated basins (Fig. S5 in Ref. [6]) possess a large fraction of sites

that are mutated (> 40 %) compared to WT. In our quasispecies simulations (cf. Appendix B),

escape out of the basin occurs exceedingly infrequently for mutation rates µ < 10

�2 and thus strains

are rarely killed in the Pre-screening step.
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Figure S2: A low-dimensional representation of the intrinsic fitness landscape of p17 computed
using principal component analysis (PCA) applied on sequences sampled according to H

int

[~s] using
the Metropolis Monte Carlo algorithm[1]. The sequences are projected along the first two principal
components (PCs) and a corresponding free energy (A(x, y)) map is computed according to Eq.
S3. The low-free energy regions correspond to high fitness states, while high-free energy regions
correspond to unfit states in sequence space. The edges of the box in the top-left corner defined by
dashed-lines are used as reflective boundaries in the quasispecies simulations. Implementation

of boundary conditions during simulation : During the Pre-screening step in our intra-host
simulations (cf. Appendix B), we compute [PC1, PC2] for every sequence. Mutants that escape
the box are considered unviable and deleted immediately.
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Figure S3: Subtype B sequences from the Los Alamos MSA (n=2474)[5] that were used to
parametrize H

int

[~s] in ref. [6] are indicated by •’s and are preponderantly located around one
of the three fitness peaks, with the exception of three sequences.
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3 Comparison of mutational probabilities upon restricted sam-

pling

As stated in section 2, an unrestricted sampling of H
int

[~s] using the Metropolis algorithm results

in mutational probabilities that do not agree with the corresponding quantities estimated from the

MSA used to parameterize the maximum entropy model [6]. However, when we exclude from the

ensemble those sequences that fall outside the upper-left “box" in PC1 � PC2 space as defined in

Fig. S2, the marginals hs
i

i
int

, hs
i

s
j

i
int

, hs
i

s
j

s
k

i
int

agree very well with hs
i

i
LANL

, hs
i

s
j

i
LANL

,

hs
i

s
j

s
k

i
LANL

(Fig. S4).

Figure S4: Comparison of the marginal one, two and three-site mutational probabilities computed
from an equilibrium sampling of H

int

[~s] (y-axis) using Metropolis sampling with the corresponding
values computed from the subtype B sequences obtained from the Los Alamos (LANL) database[5]
(x-axis).
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4 Statistics of T cell targeting of p17

We estimated the targeting frequencies of different sites in p17 within the Caucasian American

population during the acute and chronic phases of HIV infection (cf. Fig. S5). In this estimate,

a site is considered “targeted" if it is present in one or more epitopes (short peptides of 8-11 AA

length derived from viral proteins and which are directly recognized by specific CD8 T cells during

infection). While many epitopes have been clinically documented, we restricted ourselves to the

most common CD8 T cell epitopes list documented by Streeck et. al.[7]. The presence of a T cell

response to a particular epitope within a given individual is determined by two factors. First, the

set of epitopes that are likely to be targeted by specific T cells during infection in a particular

individual are determined by the specific alleles of the Human Leukocyte Antigen (HLA) gene

that the individual is endowed with. These genes encode proteins that present viral epitopes to

T cells, enabling the immune system to detect infection. Second, the frequency with which a

particular epitope is targeted relative to others within a given HLA background is determined by

the “immunodominance" of the specific T cell that recognizes the epitope [7]. For each epitope in

our list, we computed the frequency of targeting by an HLA allele that binds to this epitope by

combining the frequency of that allele within the Caucasian American population [8] with estimates

of the epitope immunodominance [7] in each case. The overall frequency of targeting at a particular

p17 site is simply a sum of the targeting frequencies of all the well-recognized epitopes that contain

this site.

Of the 132 residues in p17, we find that according to our estimates, 67 are not targeted at all, 46

are targeted at a frequency than 6%, and no site is targeted by more than 23% frequency (cf. Fig.

S5). In particular, we note that only 18 out of 132 p17 sites (< 14 %) are targeted at greater than

10% frequency in either acute or chronic phase. Strictly speaking, these estimates of the targeting

frequency at each site should be regarded as lower bounds. Comprehensive epitope maps of p17

that include all the clinically documented epitopes have been published[9] and these suggest that

every site within p17 is present in at least one documented epitope. Since most of these epitopes

are targeted by alleles present in very low frequencies across the population, we do not expect their
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inclusion to change the qualitative picture of T cell targeting painted by our rough estimates - that

is, on average, a particular site is targeted by a small fraction of individuals in a population.

Figure S5: An estimate of the frequencies with which each residue in p17 is targeted by T cell
pressure during the (a) acute phase and (b) chronic phase by HLA alleles in a general population.
These estimates were computed assuming that the distribution of Human Leukocyte Antigen (genes
that determine the T cell immune response in an individual) alleles follow that of the Caucasian
American population [8], and combining these with the frequencies with which the most common
T cell epitopes (short viral protein fragments that are directly recognized by T cells) are recognized
during the acute/chronic phase across the population [7]. Actual targeting frequencies may vary due
to the targeting frequency of T cell peptides for which such data is yet unavailable and stochastic
variation of the immune response within particular individuals.
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5 Robustness studies

How robust are our main results to variations in the simulation parameters, namely, the mutation

rate µ, the choice of parameters for the distribution generating the immune fields {b
i

}, the average

number of viral generations in an host h⌧
S

i, and the targeting intensity determined by n
max

? In

each case, we examined the effect of changing the parameter on the one, two and three-body muta-

tional probabilities computed from the dynamical simulations vis-á-vis the corresponding quantities

computed from the intrinsic fitness landscape (i.e. the database sequences). We also examined how

the Spearman rank correlation between the effective fitness H
T

and the intrinsic fitness H
int

is

affected in these cases (cf. Fig. 4).

5.1 The mutation rate µ

Keeping all else fixed, we ran our simulations for various values of the mutation rate µ in the range

10

�5 to 0.5. We repeated these simulations for different choices of the distributions that generated

the {b
i

} fields with similar results, but the trends we describe here are for the base case of a Gaussian

distribution with mean and variance equal to the sample mean and variance of the {h
i

} fields, as

introduced in the main text. At very low mutation rates (µ < 10

�4), we find that the one, two and

three-body mutational probabilities computed from the population ensemble (hs
i

i
dyn

, hs
i

s
j

i
dyn

and

hs
i

s
j

s
k

i
dyn

) are close to zero (Fig. 3a, c). Mutations are rarely sampled in this regime, and the

quasispecies in different hosts remain localized around the WT strain in the fitness landscape (cf.

Fig S8).

At intermediate values of µ 2 (10

�4, 10�2
), the agreement between the mutational probabilities

reflected by the dynamics and those computed from equilibrium sampling of the intrinsic fitness

landscape improves. This is also reflected in the rank correlation between H
T

and H
int

for subtype

B sequences which increases from 0.72 to 0.918 as µ increases from 5⇥10

�4 to 5⇥10

�3 (cf. Fig S6a-

c). At high mutation rates µ > 10

�2, however, mutations rapidly accumulate in the quasispecies in

every generation. The accumulation of a large number of mutations (> 20) increases the likelihood

of elimination in the Pre-Screening step (cf. Appendix B) if the strain escapes the basin defined
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by subtype B sequences. Possession of a large number of mutations also increases the chance of

deleterious combination of mutations (high J
ij

), which can lead to deletion of such strains in the

Selection step (cf. Appendix B). The strains that survive these steps and prevail in the population

ensemble possess a large number of mutations, and the mutational probabilities hs
i

i
dyn

, hs
i

s
j

i
dyn

reflected by these sequences overestimate their counterparts estimated from intrinsic fitness alone.

At high mutation rates, the rapid accumulation of deleterious mutations can lead to the death

of all strains in the quasispecies in some hosts. We regard such cases as unsuccessful infections

and these hosts are discarded from the simulation. Only hosts where the quasispecies is viable are

considered “productively infected" and are sampled for the consensus sequence, which is added to

the population ensemble. As µ increases, the number of successfully infected patients decreases. For

e.g., in all the simulations between µ = 10

�4 to µ = 10

�2, the number of viable consensus sequences

were in the range 4700-5500, suggesting that approximately 70-90% of the patients in our simulation

were successfully infected such that the quasispecies within these patients had achieved a mutation-

selection balance and was stable. In contrast at µ = 0.05, µ = 0.1 and µ = 0.3 this number

decreased to 1983 (30% of the total patients), 334 (5% of the total patients), and 0 respectively.

This is related to the phenomenon of mutational meltdown [10]. The sharpness of the transition

may also be attenuated by the finite size effects due to small effective population sizes we have

considered and the length of our protein. That these parameters play a role has been demonstrated

in the case of simpler fitness landscapes through stochastic simulations [11].

Taken together, our results in this section suggest that there is an intermediate range of mutation

rates where immune selection leads to an efficient exploration of the fitness landscape preserving

its correlation structure in the population ensemble.

5.2 Varying parameters of the Gaussian distribution generating {b
i

}

We varied the mean s
h

of the Gaussian distribution from which the immune parameters {b
i

} were

sampled, while keeping the variance of the distribution fixed to �2
h

(the sample variance of the

fitted {h
i

} values). For the value of the mean, we used 0.2¯h, 0.5¯h, ¯h, 2¯h, 5¯h, and 10

¯h where ¯h

is the sample mean of {h
i

} and also the canonical value of s
h

as introduced in the main text.
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(b) µ = 5⇥ 10�3
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Figure S6: Rank correlation between H
T

and H
int

for different mutation rates µ. Here, n
max

= 6

and {b
i

}’s were sampled from a Gaussian distribution with mean ¯h and variance �2
h

.
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The rate of mutation µ was fixed at the value 5 ⇥ 10

�3. We found that the correlation coefficient

between the effective and intrinsic energies, namely H
T

and H
int

, varied non-monotonically with

s
h

. While the rank correlation coefficient increased from 0.85 to 0.9 as s
h

increased from 0.2¯h

to 2

¯h, it decreased to 0.78 and 0.47 for 5

¯h and 10

¯h, respectively (cf. Fig S7). At low and high

values of s
h

, the agreement was poor between the one, two and three-body mutational probabilities

(data not shown). At low values, the immune pressure is negligible and the quasispecies in different

individuals remains localized around the WT sequence. In the mean-field approximation to H
T

(Eq. 6, main text), ¯b
i

⇡ 0 and the field at each site is offset from its equilibrium value by the

ferromagnetic term arising from the mutational coupling between generations. At very high values

of s
h

, mutations are immediately selected at sites subjected to immune pressure irrespective of their

intrinsic propensity (based on h
i

’s and J
ij

’s). Thus the mutational probabilities at the population

level become enslaved to the statistics of immune pressure at that site and no longer pay heed to the

constraints at intrinsic fitness, resulting in poor correlation between H
T

and H
int

. At intermediate

values of s
h

, the mutational probabilities and the effective energies correlated with their intrinsic

counterparts. For all of these simulations, the number of viable sequences were in the range 4500

to 5500.

5.3 Uniform distribution

We sampled {b
i

} according to a uniform distribution between the minimum and the maximum

among the {h
i

} values. Within this setting, varying the mutation rate µ produced results that were

qualitatively similar to those reported in section 5.1 above (data not shown). Between µ = 5⇥10

�4

and µ = 10

�2, the rank correlation between H
T

and H
int

increased from 0.63 to 0.91 and the slope

of the best fit line between simulated and equilibrium energies decreased from 2.46 to 1.34, just as

reported in section 5.1 for Gaussian distributed {b
i

}. However, further increase in the mutation rate

led to a decrease in the rank correlation coefficient. For instance, at µ = 0.1, the rank correlation

was 0.77 but with only 255 viable sequences (⇠ 3% of the total patients). The number of viable

sequences within the population ensemble gradually decreased beyond µ = 0.01. At µ = 0.3, there

were no viable sequences in the population ensemble.
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Figure S7: Rank correlation between H
T

and H
int

for different values of s
h

. µ = 5⇥ 10

�3
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The agreement between the simulated and the intrinsic one, two and three-body mutational

probabilities also varied with the mutation rate. At very low mutation rates µ < 5 ⇥ 10

�4 these

quantities were close to zero in the simulations, whereas at very high mutation rates µ > 0.05, there

were few viable sequences in the population ensemble and the prevailing sequences overestimated

the mutational probabilities. At intermediate mutation rates, the mutational probabilities from the

population ensemble agreed with the intrinsic values, as reported in section 5.1.

5.4 Number of generations

Within each host, the number of generations that the viral quasispecies evolve for is a random

number uniformly chosen between the limits ⌧
min

and ⌧
max

. For our canonical simulations, we

chose ⌧
min

= 25 and ⌧
max

= 500. Empirically, we noted that any ⌧
max

� 275 (h⌧
S

i � 150) did not

change the qualitative nature of our results but three runs at ⌧
max

= 150 yielded results that were

the mutational probabilities poorly correlated with their intrinsic counterparts (data not shown).

The likely reason for this discrepancy is that the viral quasispecies requires a minimum number

of generations to “sense" the immune pressure and make adaptive mutations. If the number of

generations is “long enough" the quasispecies reaches a stationary distribution. In contrast, if the

virus is sampled in a transient phase, most the mutations in its proteome might not represent the

correlation structure of the fitness landscape accurately. Within our model, we expect the minimum

number of generations needed to sense the immune response to be inversely correlated with N
v

since

the emergence of a strain with a combination of mutations that perfectly adapts (low H[~s]) to the

immune response and dominates the quasispecies increases with N
v

.

We also ran simulations by incorporating a “wait-time" in our intra-host simulations before the

immune pressure is turned on. This was implemented by fixing b
i

= 0 8 i until ⌧
min

generations

in a new host, after which the immune pressure becomes non-zero. Simulations for ⌧
min

= 0, 10, 15

and 25 yielded results that were qualitatively consistent with each other.
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5.5 Changing n
max

The parameter n
max

determines the intensity of immune targeting since any infected host is set

to randomly target a number of protein residues that is chosen uniformly between 0 and n
max

.

As noted in the main text, our choice of n
max

to be a low number was motivated from clinical

data indicating that any given person is predisposed by her/his genetic makeup to target few sites

within viral proteins [6]. The results we report in the main text are for n
max

= 6. These remain

qualitatively consistent up to n
max

= 20 but for higher values (n
max

= 30, 35 and 50), the agreement

between the mutational probabilities (and consequently energies) started deteriorating. As n
max

increases, the mutational probabilities estimated from the population ensemble overestimate the

the corresponding values computed from sampling H
int

. When n
max

is large, the immune response

is no longer perturbative in that a large fraction of the population targets every site on the protein

leading to the statistics of mutations at these sites being governed by “immune footprints".
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6 Visualizing quasispecies diversity in the absence and pres-

ence of immune pressure

Figure S8: Panels a-d depict viral quasispecies in four randomly chosen individuals in the absence of
immune pressure (~b = 0 in all hosts). Every unique strain within the quasispecies is represented by
a black dot at its location on the landscape. As can be readily discerned, different individuals have
very similar quasispecies, where the constituent mutant strains are localized around the WT strain
~s =

~
0 in sequence space (which corresponds to the point (PC1, PC2) = (0, 0)). In the absence

of an external selective force in the form of immune pressure, mutations that are deleterious to
viral fitness are not selected at the population level, although they do transiently appear within
the quasispecies of individual infected hosts. The WT strain is always the dominant strain within
individual quasispecies (represented by a white dot) and consequently, the population ensemble in
these simulations is exclusively comprised of WT strains.
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Figure S9: Panels a-d depict viral quasispecies in four randomly chosen individuals in the presence
of immune pressure. These four cases correspond to different patterns of immune pressure. In each
panel, every unique strain within the quasispecies is represented by a black dot at its location on
the landscape and the corresponding consensus strain is marked with a large white dot. Due to
the presence of diverse immune responses in a population, the quasispecies explore different regions
of the fitness landscape in different infected hosts. Accordingly, the location of the corresponding
consensus/dominant strain also explores the sequence space. The examples a-d also reflect the large
variations in quasispecies diversity across individuals. In panels a and c, the immune pressure is
such that mutation-selection balance results in a diverse quasispecies with many mutant strains.
In contrast, Panels b and d are examples of cases where a restrictive pattern of immune pressure
selects for a singular viral strain that dominates the entire quasispecies.
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7 Comparison of the 3-body mutational probabilities com-

puted from the population ensemble with intrinsic values

Figure S10: Comparison of 3-body mutational probabilities computed from the population ensemble
resulting from quasispecies simulations at µ = 5 ⇥ 10

�3 with the corresponding values computed
from MC sampling of H

int

[~s]

References

[1] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A.H., and Teller, E. Equation

of state calculations by fast computing machines. The Journal of Chemical Physics, 21:1087,

1953.

[2] Bishop, C. M. Pattern Recognition and Machine Learning. Springer New York, 2006.

[3] Friedman, J., Hastie, T., and Tibshirani, R. The Elements of Statistical Learning. Springer

Series in Statistics, 2001.

19



[4] Van der Maaten, L. J. P., Postma, E. O., and Van den Herik, H. J. Dimensionality reduction:

A comparative review. Journal of Machine Learning Research, 10:1–41, 2009.

[5] Los Alamos HIV Sequence Database. http://www.hiv.lanl.gov/.

[6] Ferguson, A. L. et al. Translating HIV sequences into quantitative fitness landscapes predicts

viral vulnerabilities for rational immunogen design. Immunity, 38(3):606–617, 2013.

[7] Streeck, H. et al. Human immunodeficiency virus type 1-specific CD8+ T-cell responses during

primary infection are major determinants of the viral set point and loss of CD4+ T cells.

Journal of Virology, 83(15):7641–7648, 2009.

[8] F. F. Gonzalez-Galarza, Christmas, S., Middleton, D., and Jones, A. R. Allele frequency net: a

database and online repository for immune gene frequencies in worldwide populations. Nucleic

acids research, 39(suppl 1):D913–D919, 2011.

[9] p17 Epitope Map. http://www.hiv.lanl.gov/content/immunology/maps/ctl/p17.html.

[10] C. O. Wilke. Quasispecies theory in the context of population genetics. BMC evolutionary

biology, 5(1):44, 2005.

[11] Tripathi, K., Balagam, R., Vishnoi, N. K., and Dixit, N. M. Stochastic simulations suggest

that hiv-1 survives close to its error threshold. PLoS Computational Biology, 8(9):e1002684,

2012.

20

http://www.hiv.lanl.gov/
http://www.hiv.lanl.gov/content/immunology/maps/ctl/p17.html

	Sampling Hint[] and low-dimensional representation using PCA
	Visualizing the prevalence landscape
	Comparison of mutational probabilities upon restricted sampling
	Statistics of T cell targeting of p17
	Robustness studies
	The mutation rate 
	Varying parameters of the Gaussian distribution generating {bi}
	Uniform distribution
	Number of generations
	Changing nmax

	Visualizing quasispecies diversity in the absence and presence of immune pressure
	Comparison of the 3-body mutational probabilities computed from the population ensemble with intrinsic values

