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Supplementary Text 
 
 
Text S1. Inputs 
 
Besides the mandatory input, optional inputs are: (i) the maximum fraction of gaps above which the variable is 
removed (default value set to 0.5); (ii) an optional sub-sample number to train MPF (used if MPF is running 
slow); (iii) an optional input file in csv/xls format comprising of sample weights to reduce sampling bias (each 
sample is weighted according to a maximum fraction threshold of similar sequences as default); and (iv) an 
optional file comprising model parameters to initialize the method.  
 
For (iii), reweighting is performed based on the provided threshold           as follows (Morcos 2011): Two 

sequences with Hamming distance less than    (where   is the length of protein) are considered to carry 

almost the same information, and vice versa. Thus, for each sequence  , a weight           is calculated, 
where    are all the sequences in the MSA having a hamming distance less than    with the sequence  . A 
threshold value of 0.1 is used as default if the user does not provide any weight file.  
 
For (iv), the user can provide an optional input maximum entropy model to initialize the MPF-BML method. 
This model may be obtained from some other inference method or from a previous run of the MPF method 
(the model obtained after running MPF is automatically saved once the MPF method converges) for which the 
user is interested in running either BML method alone or both MPF (again) and BML methods with a different 
set of parameters. For the latter, the user needs to check the provided “Run only BML step on user-provided 
parameters” option in the “Input information” panel. 
 

 
Text S2. MPF-BML parameters 
 
Here, we provide details of all parameters available in the “Parameters” panel of the MPF-BML GUI. 

 
Step 1: Mutant combining 
 
phi_opt: Mutant combining factor which indicates the ratio of entropy with grouping of states to the entropy 
without grouping. See (Louie et al., 2018) for details. A value of 0 indicates each site is coarse-grained to only 
two states, a value of 1 indicates all the states from the original MSA are kept. 
 

 
Step 2: MPF 
 
L1 reg: L1 regularization parameter. Higher value indicates more couplings will be set to zero. 
 
L2 reg: L2 regularization parameter. Higher value indicates high couplings values will be more substantially 
reduced to zero. 
 
Grad. tol: If the maximum gradient of the MPF function falls below this tolerance level, the MPF algorithm will 
terminate. Smaller value will require more time for the algorithm to converge but will converge with more 
accuracy. 
 
Func. tol: If the absolute difference between the MPF function in the previous and current iteration falls below 
this tolerance level, the MPF algorithm terminates. Smaller value will require more time for the algorithm to 
converge but will converge with more accuracy. 
 
Max iter: Maximum number of iterations before the MPF algorithm terminates.  
 

 
Step 3: BML 
 
Max iter: Maximum number of iterations before the BML algorithm terminates. 



 
Max eps: Maximum epsilon value for the individual frequencies, pairwise frequencies and connected 
correlations. The epsilon value is chosen to balance between underfitting and overfitting the individual 
frequencies, pairwise frequencies and connected correlations. Higher value will mean less accuracy but faster 
convergence. See (Louie et al., 2018) for details. 
 
Param. tol: If the sum absolute difference in parameter values in the previous and current iteration falls below 
this tolerance level, the BML algorithm terminates. Smaller value will require more time for the algorithm to 
converge but will converge with more accuracy. 
 
Grad. tol: If the sum absolute difference in the gradient of the parameter values in the previous and current 
iteration falls below this tolerance level, the BML algorithm terminates. Smaller value will require more time for 
the algorithm to converge but will converge with more accuracy. 
 
Thinning: Keep every x samples in the MCMC algorithm, where x is the thinning parameter. Higher value will 
mean less samples, thus less accuracy but faster speed. 
 
Burn-in: Remove the first x samples in the MCMC algorithm, where x is the burn-in parameter. Higher value 
will mean the MCMC algorithm will produce more accurate output, but slower speed. 
 
Cores: Number of cores to use in the MCMC algorithm. If set to a value greater than or equal to the maximum 
number of cores (Nc) available in the system, the application resets it to Nc – 1 to avoid using all available 
resources. 
 
MCMC samples: Number of samples in the MCMC algorithm before thinning and burn-in. Higher value will 
mean the MCMC algorithm will produce more accurate output, but slower speed. 
 
 
The following are RPROP specific parameters, See (Riedmiller and Braun, 1993) for more details. 
 
Gamma h: Initial weight update value for field (h) parameters. Set larger for larger step sizes. Higher value will 
mean initial faster convergence of algorithm, but converged values may be less accurate. 
 
Gamma J: Initial weight update value for coupling (J) parameters. Set larger for larger step sizes. Higher 
value will mean initial faster convergence of algorithm, but converged values may be less accurate. 
 
h pos: Weight increase factor for the fields with positive gradient. Set larger for larger step sizes. Higher value 
will mean initial faster convergence of algorithm, but converged values may be less accurate. 
 
h neg: Weight increase factor for the fields with negative gradient. Set larger for larger step sizes. Higher 
value will mean initial faster convergence of algorithm, but converged values may be less accurate. 
 
J pos: Weight increase factor for the couplings with positive gradient. Set larger for larger step sizes. Higher 
value will mean initial faster convergence of algorithm, but converged values may be less accurate. 
 
J neg: Weight increase factor for the couplings with negative gradient. Set larger for larger step sizes. Higher 
value will mean initial faster convergence of algorithm, but converged values may be less accurate. 
 
h delta max: The maximum weight update per iteration for the fields. Set larger for larger possible step sizes. 
Higher value will mean initial faster convergence of algorithm, but converged values may be less accurate. 
 
h delta min: The minimum weight update per iteration for the fields. Set larger for larger possible step sizes. 
Smaller value will mean initial faster convergence of algorithm, but converged values may be less accurate. 
 
J delta max: The maximum weight update per iteration for the couplings. Set larger for larger possible step 
sizes. Higher value will mean initial faster convergence of algorithm, but converged values may be less 
accurate. 
 



J delta min: The minimum weight update per iteration for the couplings. Set larger for larger possible step 
sizes. Smaller value will mean initial faster convergence of algorithm, but converged values may be less 
accurate. 
 
 

Text S3. Contact prediction using the inferred couplings 

 
A tab-delimited text file is also provided as an output with pairs of positions arranged in descending order 
according to their computed Frobenius norm, a metric representative of the pairs in contact. This metric is 
calculated using the inferred couplings (Cocco et al., 2018) and the higher the value of this metric, the higher 
is the chance of this pair to be in contact, and vice versa. 



 
Supplementary Tables 
 
 
 
 
 
 
 
Table S1. Summary of the input datasets analyzed using MPF-BML. 
 

Dataset Type of data Format Weights 
available 

Number of 
samples 

Number of 
variables 

Number of 
parameters  

Associated 
figure 

        
HCV E2 surface glycoprotein Amino acid 

sequence data 
FASTA Yes 3,363 352 ~ 2x10

6
 Fig. 1 

        

Erdos-Renyi random graphs (ER05) Synthetic 
categorical data 

Microsoft 
Excel Open 
XML 

No 10,000 50 ~ 5x10
4
 Fig. S1 

        
HIV p7 nucleocapsid protein Amino acid 

sequence data 
FASTA No 4,131 71 ~ 1x10

5
 Fig. S2 

        
Trypsin inhibitor protein family (PF00014) Amino acid 

sequence data 
FASTA No 4,915 53 ~ 5x10

4
 Fig. S3 

        

Breast cancer data Somatic mutations 
(binary data) 

Microsoft 
Excel Open 
XML 

No 2,327 100 ~ 5x10
3
 Fig. S4 

 

        

Wisconsin breast cancer data (UCI repository) Categorical  
data 

Microsoft 
Excel Open 
XML 

No 699 9 ~ 3x10
3
 Fig. S5 

        

Chess data (UCI repository) Categorical 
data 

Microsoft 
Excel Open 
XML 

No 3,196 36 ~ 5x10
2
 Fig. S6 

        

 
 
  



 
 
 
 
 
 
 
 
Table S2. Format of the inferred maximum entropy model parameters using MPF-BML. Values are shown for a synthetic test data set. The first row and column show the 
change of configuration at a position with A/1/B denoting a change from configuration A to configuration B at position 1. The diagonal entries of the matrix represent the 
inferred fields while the non-diagonal entries represent the inferred couplings. These parameters are saved automatically as a tab delimited file. 
 

 
M/1/- R/2/K R/2/T V/3/A K/4/M K/4/T G/5/E I/6/T I/6/M R/7/K R/7/M K/8/R N/9/S 

M/1/- 6.43877 -0.31164 0.487343 -0.8045 0.325733 -0.14218 -0.27445 0.150707 0.668197 0.068006 0.28129 0.27983 0.071754 

R/2/K -0.31164 4.690157 0.004776 0.246884 0.266135 -1.31717 -0.72883 0.50299 -0.35844 -0.53223 1.163576 -0.03381 0.365269 

R/2/T 0.487343 0.004776 -1.0441 -0.12154 0.953398 0.620634 0.588852 0.322001 -0.88575 0.614748 0.12424 0.870705 0.503503 

V/3/A -0.8045 0.246884 -0.12154 4.172256 0.283196 0.787504 -0.00353 -0.26528 0.033055 -0.44571 -1.2515 -0.23769 1.322479 

K/4/M 0.325733 0.266135 0.953398 0.283196 2.792618 -2.1E-05 -0.95053 0.333316 1.192085 0.744931 -0.27076 -0.62612 0.34005 

K/4/T -0.14218 -1.31717 0.620634 0.787504 -2.1E-05 3.632102 -0.1222 0.800195 0.250115 0.937377 -0.27037 -0.09487 1.162473 

G/5/E -0.27445 -0.72883 0.588852 -0.00353 -0.95053 -0.1222 2.732045 -0.03059 -1.84851 0.655304 0.064181 -0.39161 -0.14443 

I/6/T 0.150707 0.50299 0.322001 -0.26528 0.333316 0.800195 -0.03059 3.744127 -5.5E-05 0.274624 0.329657 0.040394 -0.69886 

I/6/M 0.668197 -0.35844 -0.88575 0.033055 1.192085 0.250115 -1.84851 -5.5E-05 3.82687 1.352347 -0.40026 1.040857 0.853013 

R/7/K 0.068006 -0.53223 0.614748 -0.44571 0.744931 0.937377 0.655304 0.274624 1.352347 5.206358 -1E-04 -0.8084 -0.01596 

R/7/M 0.28129 1.163576 0.12424 -1.2515 -0.27076 -0.27037 0.064181 0.329657 -0.40026 -1E-04 5.098788 0.930253 -0.61156 

K/8/R 0.27983 -0.03381 0.870705 -0.23769 -0.62612 -0.09487 -0.39161 0.040394 1.040857 -0.8084 0.930253 4.569314 -0.99103 

N/9/S 0.071754 0.365269 0.503503 1.322479 0.34005 1.162473 -0.14443 -0.69886 0.853013 -0.01596 -0.61156 -0.99103 5.057654 

 
  



Supplementary Figures 
 

 

 
 
Figure S1. Model inferred using the MPF-BML package for Erdos-Renyi random graphs (ER05), analyzed in (Barton et al., 2016). Here, the model is initialized by a set of 

parameters previously inferred using the MPF method. 
  



 
 

 

 
 

Figure S2. Model inferred using the MPF-BML package for HIV p7 nucleocapsid protein, analyzed in (Barton et al., 2016). 
  



 
 

 

 
 

Figure S3. Model inferred using the MPF-BML package for Trypsin inhibitor protein family (PF00014), analyzed in (Barton et al., 2016).  

 

  



 
 

 
 
Figure S4. Model inferred using the MPF-BML package for whole genome somatic mutation (100 most highly expressed genes) breast cancer data (Bamford et al., 2004) 

obtained from http://cancer.sanger.ac.uk/.  
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Figure S5. Model inferred using the MPF-BML package for the classical Wisconsin breast cancer data (Wolberg and Mangasarian, 1990) obtained from the UCI 
repository (Asuncion and Newman, 2007).  

  



 
 

 
 

Figure S6. Model inferred using the MPF-BML package for the classical chess data set obtained from the UCI repository (Asuncion and Newman, 2007).   
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