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Supplementary Information
Evolutionary model

We assume a WF model consisting of N individuals evolving under mutation, selection, and recombination. Each individual is
represented by a sequence of length L. The loci are assumed to be bi-allelic where the value of each locus is either 0 (wild-type (WT))
or 1 (mutant), thus resulting in M = 2L possible haplotypes. For clarity, we use i, j, ... to refer to locus indices and a, b, ... to refer
to haplotype indices. The index is shown as a subscript when representing only one of the locus or haplotype indices. However,
when both indices need to be shown simultaneously, the locus index is shown as a subscript while the haplotype index is shown
as a superscript. Let na(t) denote the number of individuals in the population that belong to haplotype a at generation t such that

∑M
a=1 na(t) = N. At generation t, denote z(t) = (z1(t), ..., zM(t)) as the observed haplotype frequencies with za(t) = na(t)

N . The
observed allele frequencies are correspondingly x(t) = (x1(t), ..., xL(t)) and are related to haplotype frequencies by xi = ∑a ga

i xa
where ga

i represents the allele (either 0 or 1) at the ith locus of the ath haplotype.
Here we assume that the fitness contribution from individual alleles is additive, such that the fitness fa of the ath haplotype can be

written

fa = 1 +
L

∑
i=1

siga
i .

Here the si denote the time-invariant selection coefficients for mutant alleles, which quantify the selective advantage of mutant allele i
relative to wild-type (WT). This model is consistent with a multiplicative fitness model where the effects of individual mutations are
small, or an exponential fitness function for an additive trait, where each mutation is assumed to make a small contribution to the trait
value.

Under Wright-Fisher dynamics, the probability of observing haplotype frequencies z(t + 1) at generation t + 1, given haplotype
frequencies of z(t) at generation t, is

P(z(t + 1)|z(t)) = N!
M

∏
a=1

pa(z(t))Nza(t+1)(n)
(Nza(t + 1))!

, (S1)

where pa(z(t)) is the probability of observing haplotype a at generation t. To derive this expression, we sum over contributions to
generating haplotype a in the next generation, including the effects of mutation, recombination, and selection,

pa(z(t)) =
ya(t) fa + ∑b|b ̸=a (µbayb(t) fb − µabya(t) fa)

∑M
b=1 yb(t) fb

.

Here µba is the probability for haplotype b to mutate to haplotype a in a generation. ya(t) is the frequency of haplotype a at generation
t after recombination. Specifically, we write ya(t) as

ya(t) = (1 − r)L−1za(t) +
(

1 − (1 − r)L−1
)

ψa(z(t)) ,

where r is the probability of recombination per locus per generation, and ψa(t) is the probability of generating haplotype a through
random recombination between two haplotypes in the population at time t.

We assume that mutations at different loci are independent with the same mutation rate µ, so that µba = µd(b,a)(1 − µ)L−d(b,a)

where d(b, a) is the number of different alleles (Hamming distance) between haplotype b and haplotype a. Below, we will follow the
assumption that the population size N is large, and that the selection coefficients si, mutation rate µ, and recombination rate r are
small (O(1/N)). For now, expanding the expression for pa((t)) to eliminate terms of order µ2 and higher, we have

pa(z(t)) =
ya(t) fa + µ ∑b|d(b,a)=1(yb(t) fb − ya(t) fa)

∑M
b=1 yb(t) fb

. (S2)

The probability that the haplotype frequency vector follows a particular evolutionary path (z(t1), z(t2), ..., z(tK)), conditioned on the
initial state z(t0), population size N, mutations rate µ and selection coefficients s is

P
(
(z(tk))

K
k=1 |z(t0), N, µ, s

)
=

K−1

∏
k=0

P (z(t + 1)|z(t)) .

Covariance can be estimated as N
〈
∆xi∆xj

〉
Recall that we work under the assumption that the population size N is large, selection coefficients si, mutation rate µ, and recom-
bination rate r are O(1/N). We then expand to leading order in 1/N. Following the multinomial distribution Equation (S1), we
have 〈

n(t + 1)− n(t)
N

〉
= p(z(t))− z(t) .
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Expanding Equation (S2) yields

pa(z(t)) = za(t)

(
fa − ∑

b
( fb − 1)zb(t)

)
+ µ ∑

b|d(a,b)=1
(zb(t)− za(t))− r(L − 1) (za(t)− ψa(t)) + O

(
1

N2

)

= za(t) + O
(

1
N

)
.

Then the moment expansion can be derived as

〈(
na(t + 1)− na(t)

N

)2
〉

=
pa(z(t)) (1 − pa(z(t)))

N
+ (pa(z(t))− za(t))

2

=
za(t) (1 − za(t))

N
+ O

(
1

N2

)
,

〈
na(t + 1)− na(t)

N
nb(t + 1)− nb(t)

N

〉
= − pa(z(t))pb(z(t))

N
+ (pa(z(t))− za(t))(pb(z(t))− zb(t))

= − za(t)zb(t)
N

+ O
(

1
N2

)
.

Then we arrive at the desired relation

⟨∆xi(t)∆xj(t)⟩ =
〈(

∑
a

ga
i ∆na(t)

)(
∑
b

gb
j ∆nb(t)

)〉

=

〈(
∑
a

ga
i

na(t + 1)− na(t)
N

)(
∑
b

gb
j

nb(t + 1)− nb(t)
N

)〉

= ∑
a

ga
i ga

j

〈(
na(t + 1)− na(t)

N

)2
〉
+ ∑

a ̸=b
ga

i gb
j

〈
na(t + 1)− na(t)

N
nb(t + 1)− nb(t)

N

〉

= ∑
a

ga
i ga

j
za(t)(1 − za(t))

N
− ∑

a ̸=b
ga

i gb
j

za(t)zb(t)
N

+ O
(

1
N2

)

= ∑
a

ga
i ga

j
za(t)

N
− ∑

a,b
ga

i gb
j

za(t)zb(t)
N

+ O
(

1
N2

)

=
xij(t)− xi(t)xj(t)

N
+ O

(
1

N2

)
=

Cij(z(t))
N

+ O
(

1
N2

)
.

where xij(t) denotes the frequency of haplotypes in the population with mutant alleles at both sites i and j at time t. Cij(z(t)) are
entries of the mutant allele frequency covariance matrix, which is equivalent to the linkage disequilibrium (LD) measure D. Note that
for i = j, xij = xi, and thus ⟨∆xi(t)∆xi(t)⟩ = xi(t) (1 − xi(t)) /N + O(1/N2).

Marginal path likelihood (MPL) inference
Sohail et al. presents a diffusion approximation and path integral expression for the stochastic haplotype frequency dynamics under
the WF model setting (Sohail et al. 2021). The path integral expression for the probability of observing a trajectory of haplotype
frequencies (z(t1), z(t2), ..., z(tK)) is given by

P
(
(z(tk))

K
k=1 |z(t0), N, µ, s

)
=

K−1

∏
k=0

P (z(t + 1)|z(t)) (S3)

≈
(

K−1

∏
k=0

[
1√

det C(z(tk))

(
N

2π∆tk

)M/2
dz(tk+1)

])
exp

(
− N

2
S
(
(z(tk))

K
k=0

))
,

where C(z(tk)) is the haplotype covariance matrix, i.e.,
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(C(z(t)))ab :=

{
za(t)(1 − za(t)) a = b
−za(t)zb(t) a ̸= b

.

and

S
(
(z(tk))

K
k=0

)
=

K−1

∑
k=0

1
∆tk

M

∑
a=1

M

∑
b=1

[za(tk+1)− za(tk)− ∆tkda(z(tk))]
(

C−1(z(tk))
)

ab
[zb(tk+1)− zb(tk)− ∆tkdb(z(tk))]

where da(z(tk)) is the expected change in haplotype frequency za at time tk.
The MAP estimate of the selection coefficients can be obtained by solving

ŝ = argmax
s

L
(

s|N, µ, (z(tk))
K
k=1

)
Pprior(s) ,

where Pprior(s) is an assumed prior

Pprior(s) =
1

(2πσ2)R/2 exp
(
− 1

2σ2 sTs
)

,

with mean zero and variance σ2 > 0, and the likelihood function is given as

L
(

s|N, µ, (z(tk))
K
k=1

)
= P

(
(z(tk))

K
k=1 |z(t0), N, µ, s

)
.

The right-hand side is approximated by Equation (S3). Differentiating the expression with respect to s and equating to zero leading to
the MAP estimator of selection coefficients s

ŝ =

[
K−1

∑
k=0

∆tkC (x(tk)) + γI

]−1

×
[

x(tk)− x(t0) + µ
K−1

∑
k=0

∆tk (2x(tk)− 1)

]
,

where γ = 1/Nσ2.

Simulation

To benchmark the performance of our method, we generated artificial time series sequence data by simulating evolution as a Wright-
Fisher process. As in previous section, the loci were assumed to be bi-allelic. We used 10 different sets of selection coefficients (see
Supplementary Figure S1) and simulate 20 replicates of data for each set, totalling 200 simulations. In each simulation, a population
of N = 1000 sequences were simulated to evolve for T = 700 generations. At the first generation, the population consisted of four
haplotypes that were randomly generated, and the individuals were randomly distributed over the four haplotypes. At a generation
t, the population first goes through a multinomial sampling process to determine the number of sequences za(t) for each existing
haplotype a in the current generation, where the probability pa for a haplotype a to be drawn is proportional to the product of its
frequency in the last generation za(t − 1) and fitness fa, i.e.,

pa(z(t)) =
za(t − 1) fa

∑M
b=1 zb(t − 1) fb

.

Mutations were then induced randomly by a preset mutation rate µ = 10−3, under the constraint that each sequence can have at most
one mutation per generation.

In order to test effects of recombination, we performed another 200 simulations with the same setup as above, but with recombination
enabled. In these simulations, after mutations were randomly generated, the population went through a recombination step at a rate
of r = 10−5, i.e., each pair of sequences had a probability of r to recombine at a random locus. With this setup each simulation had
around 3.5 × 104 mutation events, and around 3.5 × 103 recombination events.

MPL implementation

Linear interpolation
When implementing MPL inference following Equation (4), with time-series allele frequencies and covariances (observed or estimated),
we linearly interpolate allele frequencies {xi}, i = 1, ..., L and pairwise allele frequencies {xij}, i, j = 1, 2, ..., L between each two
adjacent time points in order to compute the integrated covariance matrix, i.e.,

Cintegrated = ∑
k

∫ tk+1

tk

C(t)dt = ∑
k

∫ tk+1

tk

xij(t)− xi(t)xj(t)dt ,

where xi(t) = xi(tk) +
t−tk

tk+1−tk
(xi(tk+1) − xi(tk)), and xij(t) = xij(tk) +

t−tk
tk+1−tk

(xij(tk+1) − xij(tk)) for t ∈ [tk, tk+1]. The linear
interpolation is adopted as a standard procedure for MPL inference, and has little influences for results presented in this paper.
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The only exception is for unnormalized results, where the linear interpolation interferes with unnormalized estimates, leading to
poor inference of selection coefficients. Therefore for unnormalized results the integrated covariance matrix is computed as sum of
covariance matrix at each time point, times the average time interval around it, i.e.,

Cintegrated = ∑
k

C(tk)
tk+1 − tk−1

2
.

Supplementary results

Choices of the time window
Here we show how different choices of time window affects estimation of covariance matrix and inference of selection coefficients in
Supplementary Figure S4. Performance improves with larger time windows, and saturates at certain values. The window needed for
optimal performance gets larger when data gets more limited. Further increasing the window size from the saturation point does not
show harm to performance in our testing.

Effect of normalization
In Equation (3), we normalize the initial estimate E with observed variances. Here in Supplementary Figure S3 we compare its
performance with or without the normalization step. The normalization step reliably decreases error of the estimated covariance
matrix, and subsequently improves inference of selection coefficients.

Choices of the shrinker and η

In Supplementary Figure S6 we show how values of the regularization strength η and choices of shrinkers affect performance
of nonlinear shrinkage regularization method in various degrees of finite sampling effects. We tested 10 optimal shrinkers that
are respectively derived using loss functions for the Frobenius norm or nuclear norm of R̂ − R, R̂−1 − R−1, R−1R̂ − I, R̂−1R − I,
R̂−1/2RR̂−1/2 − I, where Frobenius norm and nuclear norm for a m × n matrix A are defined as

||A||Frobenius =

√√√√ m

∑
i=1

n

∑
j=1

|Aij|2 , (S4)

||A||nuclear = ∑
i

σi(A) .

where σi(A) is the ith sigular value of matrix A. We find that shrinkers corresponding to Frobenius loss functions typically outperform
those corresponding to nuclear loss functions. And the shrinker corresponding to the loss function of Frobenius norm of R̂−1R − I has
best performance across almost all sampling variations. As for choices of the regularization strength η, we find that a small strength
(η = 1 × 10−5) is best for most cases when sampling time interval is smaller than 10, with which all shrinkers collapse to the same
performance. In fact with a vanishing η, these optimal shrinkers for different loss functions approximately collapse to one same
shrinker, which merely sets eigenvalues smaller than λ+(η) to 1 and largely preserves larger ones’ original values, where λ+(η) is
the right bound of eigenvalue distribution of a high-dimensional random covariance matrix given by the Marchenko–Pastur law
(Marčenko and Pastur 1967). Overall we find that the shrinker corresponding to the loss function of Frobenius norm of R̂−1R − I,
combined with a small regularization strength η = 1 × 10−5 yields near-optimal performance in almost all cases.

Performance comparison of all methods
Here we include side-by-side comparisons for performances of all tested methods under various limited sampling effects in both
measures, e.g., Spearman’s ρ and MAE, in Supplementary Figure S7-S8. On average, linear shrinkage tends to perform very slightly
better than nonlinear methods when the time interval between samples is small. However, the regularization strength for the linear
method needs to be tuned for optimal performance. For large sampling intervals, the linear regularization strength needed to achieve
optimal rank correlation between the true and inferred selection coefficients increases in proportion to ∆g, which results in extremely
small magnitudes for inferred selection coefficients. For these reasons, nonlinear regularization (with strength η = 1 × 10−5 and using
loss function of Frobenius norm of R̂−1R − I) is likely the best choice for arbitrary inference problems.

Performance on simulated data with recombination
We perform another 200 simulations with the same setup as described in , except that the recombination is now enabled with a
rate of 1 × 10−5. In each simulation, a population of N = 1000 sequences with L = 50 loci evolves for T = 700 generations. The
mutation rate of µ = 1e−3 expects to generate around 3.5 × 104 mutation events. The recombination rate of r = 1 × 10−5 expects to
generate around 3.5 × 103 recombination events. Performances of various methods on selection inference are shown in Supplementary
Figure S9-S10. Performances are consistent with those evaluated on simulated data without recombination shown in . As expected
from our derivation, the Est method and its variations apply to evolution with recombination.
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Performance combining multiple replicate data with different founder haplotypes
We generate 20 different initial haplotype distributions, each with four random founder haplotypes. Individuals in the initial
population are randomly distributed across founder haplotypes. We perform a WF simulation for each combination of the 20 initial
distributions and 10 sets of selection coefficients, yielding 200 simulations in total. We then investigate the effects of combining 20
replicate data with the same selection but different founder haplotypes. As shown in Supplementary Figure S11, performances on
selection inference of all methods are greatly improved.
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Figure S1 Uniform, trimodal and Gaussian distributions are used to generate 10 sets of selection coefficients used in simula-
tions. The first two sets (Set 1-2) of selection coefficients are drawn from uniform distribution in range [-0.05, 0.05], with 0 and 10
neutral alleles, respectively. The next four sets (Set 3-6) are drawn from a trimodal distribution, a combination of three Gaussian
distributions with standard deviation of 0.01, centered at -0.03, 0, 0.03 respectively. Another four sets (Set 7-10) are drawn from a
Gaussian distribution with standard deviation of 0.02, centered at 0.
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Figure S2 Regularization restrains large terms in the inverse of estimated covariance matrix. (A) Terms in true covariance matrix
are compared with estimated covariance matrix (left), estimated and linearly-regularized covariance matrix (middle), and estimated
and nonlinearly-regularized covariance matrix (right). Both regularization methods decrease magnitudes of diagonal terms, but
have little influence on off-diagonal terms. (B) Terms in the inverse of true covariance matrix are compared with inverse of esti-
mated covariance matrix (left), inverse of estimated and linearly-regularized covariance matrix (middle), and inverse of estimated
and nonlinearly-regularized covariance matrix (right). Both regularization methods greatly restrain magnitudes of both diagonal
and off-diagonal terms in the inverse of covariance matrix. The covariance matrices compared here are all integrated throughout
the simulation shown in Figure 1A, using data sampled every 10 generations with 100 sequences per sample. The linear shrinkage
regularization adopts a strength of 10, and the nonlinear shrinkage regularization adopts the optimal shrinker corresponding to the
loss function of the Frobenius norm of R̂−1R − I combined with a regularization strength η = 1 × 10−5.
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Figure S3 Normalization improves performance of both estimating covariance and inferring selection. (A) Spearman’s rank cor-
relation coefficients between estimated and true integrated covariance matrix entries, (B) MAE of estimated integrated covariance
matrix normalized by number of generations used, (C) Spearman’s rank correlation coefficients between inferred and true selection
coefficients, (D) MAE of inferred selection coefficients, with or without normalization, averaged over 200 simulations with same
setup as shown in Figure 1A, are compared here. The normalization step reliably decreases error of estimation of the integrated
covariance matrix, and improves accuracy of inference of selection coefficients.
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Figure S4 Performance improves with larger time windows. Spearman’s rank correlation coefficients between inferred and true
selection coefficients, averaged over 200 simulations with same setup as shown in Figure 1A, are shown for four cases (A) when
data is ample, (B) when only 10 samples are drawn at each time point, (C) when the sampling time interval is 10 generations, (D)
when only 10 samples are drawn at each time point and the sampling time interval is 10 generations. In general the performance
gets better with larger time window, and saturates at certain values, e.g., (A) at window=1, (B)(C)(D) around window=20. Overall a
window of 20 is sufficient for optimal performance for these four cases, while further increasing the window does not show harm to
the performance.
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Figure S5 Inferred selection coefficients for an example simulation. Selection coefficients inferred by various methods with ample
data are compared with true values for the example simulation plotted in Figure 1A. Each dot shows the true versus inferred se-
lection coefficients for a locus in a single simulation. When sampling is complete, the naive Est method is sufficient to recover both
ordering and magnitudes of the underlying selection coefficients and has similar performance as the MPL method which uses true
covariance information. The regularized methods preserve the performance on Spearmanr’s ρ, while having smaller magnitudes.
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Figure S6 Nonlinear shrinkage performs best with a small regularization strength η. Spearman’s rank correlation coefficients
between inferred and true selection coefficients, averaged over 200 simulations with same setup as shown in Figure 1A, are shown
for different values of gamma using 10 different shrinkers, (A) when data is ample, (B) when only 10 samples are drawn at each
time point, (C) when sampling time interval is 10 generations, (D) when only 10 samples are drawn at each time point and sam-
pling time interval is 10 generations. Shrinkers optimal for Frobenius loss are plotted as solid lines, while those for nuclear loss are
plotted as dashed lines.
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Figure S7 Spearmanr’s ρ of all tested methods. Spearman’s rank correlation coefficients between inferred and true selection co-
efficients, averaged over 200 simulations with same setup as shown in Figure 1A, are shown for different limited sampling effects
using (A) SL method which ignores genetic linkage, (B) MPL method which uses true sample covariance, (C) Est method with
normalized estimate of covariance, (D) Est method with unnormalized estimate of covariance, (E) Est method with normalized esti-
mate of covariance, regularized by linear shrinkage of strength γ = 10∆g, (F) Est method with normalized estimate of covariance,
regularized by nonlinear shrinkage, with strength η = 1 × 10−5 and using the optimal shrinker derived for the loss function of
Frobenius norm of R̂−1R − I.
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Figure S8 MAE of inferred selection coefficients for all tested methods. MAE of inferred selection coefficients, averaged over
200 simulations with same setup as shown in Figure 1A, are shown for different limited sampling effects using (A) SL method
which ignores genetic linkage, (B) MPL method which uses true sample covariance, (C) Est method with normalized estimate of
covariance, (D) Est method with unnormalized estimate of covariance, (E) Est method with normalized estimate of covariance,
regularized by linear shrinkage of strength γ = 10∆g, (F) Est method with normalized estimate of covariance, regularized by
nonlinear shrinkage, with strength η = 1 × 10−5 and using the optimal shrinker derived for the loss function of Frobenius norm of
R̂−1R − I. Note that the mean absolute value of true selection coefficients is about 0.015. We find that when sampling time interval
is large (∆g = 10), the linear shrinkage regularization method has high MAE, which is because it infers selection coefficients with
vanishing magnitudes.
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Figure S9 Spearmanr’s ρ of all tested methods on simulated data with recombination. Performance of various methods on se-
lection inference are evaluated and averaged over 200 simulations. The recombination rate is set as 10−5 per locus per generation.
Other parameters are the same as the example shown in Figure 1A. Spearman’s rank correlation coefficients between inferred and
true selection coefficients are shown for different limited sampling effects using (A) SL, which ignores linkage disequilibrium, (B)
MPL, which uses the true population covariance, (C) Est with normalized estimates of covariance, (D) Est with unnormalized esti-
mates of covariance, (E) Est with normalized estimates of covariance, regularized by linear shrinkage with strength γ = 10∆g, (F)
Est with normalized estimates of covariance, regularized by nonlinear shrinkage, with strength η = 1 × 10−5 and using the optimal
shrinker derived for the loss function of Frobenius norm of R̂−1R − I.
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Figure S10 MAE of inferred selection coefficients for all tested methods on simulated data with recombination. The perfor-
mance of various methods on selection inference are evaluated and averaged over 200 simulations. The recombination rate is set as
10−5 per locus per generation. Other parameters are the same as the example shown in Figure 1A. MAE of inferred selection coeffi-
cients are shown for different limited sampling effects using (A) SL method which ignores genetic linkage, (B) MPL method which
uses true sample covariance, (C) Est method with normalized estimate of covariance, (D) Est method with unnormalized estimate
of covariance, (E) Est method with normalized estimate of covariance, regularized by linear shrinkage of strength γ = 10∆g, (F)
Est method with normalized estimate of covariance, regularized by nonlinear shrinkage, with strength η = 1 × 10−5 and using the
optimal shrinker derived for the loss function of Frobenius norm of R̂−1R − I. Note that the mean absolute value of true selection
coefficients is about 0.015. We find that when the sampling time interval is large (∆g = 10), the linear shrinkage regularization
method has high MAE, which is because it infers selection coefficients with vanishing magnitudes.
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Figure S11 Performance can be greatly improved by combining data from multiple replicates with different founder haplotypes.
Spearman’s rank correlation coefficients between inferred and true selection coefficients, averaged over 200 simulations generated
from 10 sets of selection coefficients and 20 sets of initial populations (each initial population has individuals randomly distributed
over four randomly generated founder haplotypes), are shown (A) when using single replicate, and (B) when combining 20 repli-
cates with different initial haplotype distributions. The performance on selection inference for all methods is greatly improved.
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Figure S12 Comparative performance of haplotype reconstruction methods on simulated data with complex dynamics. Per-
formance of various methods, including two haplotype reconstruction methods (haploSep and Evoracle), on selection inference are
evaluated for 200 simulations with the same setup as the example shown in Figure 1A. Each dot corresponds to one of 200 simu-
lations, and each bar denotes the mean value of all corresponding dots. The data used in this comparison is ample without finite
sampling. We compare their performance on (A) Spearman’s rank correlation coefficients and (B) MAE between inferred and true
covariances (not including variances), (C) Spearman’s rank correlation coefficients, and (D) MAE between inferred and true selec-
tion coefficients. Note that we use the true covariance information for MPL and only variances for SL, hence no covariance terms
are estimated and correlation/error terms for MPL and SL in parts A and B are not applicable. With ample sampling, our (naive)
method Est and its variations have similar performance, with all variations except for the unnormalized option clearly superior to
SL. Methods that aim to reconstruct haplotypes (haploSep and Evoracle) do not show performance improvements over SL for these
simulations.


