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New and more transmissible variants of SARS-CoV-2 have
arisen multiple times over the course of the pandemic. Rapidly
identifying mutations that affect transmission could facilitate
outbreak control efforts and highlight new variants that war-
rant further study. Here we develop an analytical epidemio-
logical model that infers the transmission effects of mutations
from genomic surveillance data. Applying our model to SARS-
CoV-2 data across many regions, we find multiple mutations
that strongly affect the transmission rate, both within and out-
side the Spike protein. Importantly, our model detects lineages
with increased transmission even at low frequencies. We rapidly
infer significant transmission advantages for the Alpha, Delta,
and Omicron variants after their appearances in regional data,
when their regional frequencies were only around 1-2%. Our
model enables the rapid identification of variants and mutations
that affect transmission from genomic surveillance data.

Viruses can acquire mutations that affect how efficiently
they infect new hosts, for example by increasing viral load
or escaping host immunity1–4. The ability to rapidly iden-
tify mutations that increase transmission could inform out-
break control efforts and identify potential immune escape
variants5–9. However, estimating how individual mutations
affect viral transmission is a challenging problem.

Current methods to estimate changes in viral transmission
generally rely on phylogenetic analyses or fitting changes
in variant frequencies to logistic growth models or multi-
nomial extensions5,10–13. Phylogenetic analyses for viruses
can be challenging due to a high degree of sequence simi-
larity, which implies that the data can be explained equally
well by a number of different trees14. Phylogenetic analyses
also typically rely on extensive Markov chain Monte Carlo
sampling that becomes intractable for very large data sets.
Growth models can estimate the difference in transmissibil-
ity between one variant and others circulating in the same
region. However, their estimates may be difficult to com-
pare for variants that arose in other regions or with differ-
ent genetic backgrounds and they typically do not identify
specific mutations responsible for changes in transmission.
These approaches also often do not account for superspread-
ing —where a small number of infected individuals cause the
majority of secondary infections —which has been observed
for viruses like SARS-CoV and SARS-CoV-215–18.

To overcome these challenges, we developed a method to
infer the effects of single nucleotide variants (SNVs) on vi-

ral transmission that systematically integrates genomic data
from different outbreak regions and accounts for stochastic
effects such as superspreading. Our analytical approach is
based on a simple epidemiological model, allowing it to be
efficiently applied to large data sets and opening the door to
future theoretical extensions. For clarity, we refer to non-
reference nucleotides (including deletions or insertions) as
SNVs and viral lineages possessing common sets of SNVs as
variants. Simulations show that our approach can reliably es-
timate transmission effects of SNVs even from limited data.

We applied our method to more than 5.6 million SARS-
CoV-2 sequences from 126 geographical regions to reveal
the effects of mutations on viral transmission throughout the
pandemic. While the vast majority of SARS-CoV-2 muta-
tions have negligible effects, we readily observe increased
transmission for sets of SNVs in Spike and other hotspots
throughout the genome. Importantly, our approach is sensi-
tive enough to identify variants with increased transmission
before they reach high frequencies. We demonstrate our ca-
pacity for early detection by studying the rise of the Alpha
and Delta variants in Great Britain and Omicron in South
Africa. We reliably infer increased transmission for these
variants rapidly after their emergence, when their frequency
in the region was only around 1-2%. An untargeted search
for sets of mutations that strongly increase viral transmission
also reveals multiple collections of SNVs belonging to well-
known variants. Collectively, these data show that our model
can be applied for the surveillance of evolving pathogens to
robustly identify variants with transmission advantages and
to highlight key mutations that may be driving changes in
transmission.

Results

Epidemiological Model

To quantify the effects of mutations on viral transmission,
we developed a generalized Galton-Watson-like stochas-
tic branching process model of disease spread (Methods).
Branching processes have been frequently used to model the
stochastic numbers of infections in a population19–21. Our
model incorporates superspreading by drawing the number of
secondary infections caused by an infected individual from a
negative binomial distribution with mean R, referred to as
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the effective reproduction number, and dispersion parameter
k (refs.15–18,22,23). Multiple variants with different transmis-
sion rates are included by assigning a variant a an effective
reproduction number Ra = R(1 +wa). Under an additive
model, the net increase or decrease in transmission for a vari-
ant is the sum of the individual transmission effects si for
each SNV i that the variant contains. In analogy with popu-
lation genetics, we refer to the wa and si as selection coeffi-
cients.

We can then apply Bayesian inference to estimate the
transmission effects of SNVs that best explain the observed
evolutionary history of an outbreak. To simplify our analy-
sis, we use a path integral technique from statistical physics,
recently applied in the context of population genetics24, to
efficiently quantify the probability of the model parameters
given the data (for details, see Supplementary Information).
This allows us to derive an analytical estimate for the max-
imum a posteriori selection coefficients ŝ, normalized per
serial interval, for a given set of viral genomic surveillance
data,

ŝ =
[
γ′I+Cint

]−1 ∆x . (1)

Here ∆x is the change in the SNV frequency vector over
time, γ′ is a rescaled regularization term proportional to the
precision of a Gaussian prior distribution for the selection co-
efficients si (Methods), and I is the identity matrix. Cint
is the covariance matrix of SNV frequencies integrated over
time, and accounts for competition between variants as well
as the speed of growth for different viral lineages (Supple-
mentary Information). Data from multiple outbreaks can be
combined by summing contributions to the integrated covari-
ance and frequency change from each individual trajectory
(Methods). Our theoretical model could also be extended to
incorporate additional features of disease transmission, such
as the travel of infected individuals between different out-
break regions.

Validation in simulations

To test our ability to reliably infer selection, we analyzed sim-
ulation data using a wide range of parameters. We found
that inference is accurate even without abundant data, es-
pecially when we combine information from multiple out-
breaks (Fig. 1, Supplementary Fig. 1). Because we model
the evolution of relative frequencies of different variants, ac-
curate inference of selection does not require the knowledge
of difficult-to-estimate parameters such as the current number
of infected individuals or the effective reproduction number
(Methods). Simulations also demonstrated that our model is
robust to variations in effective reproduction numbers in dif-
ferent regions (Supplementary Fig. 2).

Global patterns of selection in SARS-CoV-2

We studied the evolutionary history of SARS-CoV-2 using
genomic data from GISAID25 as of June 9, 2022. We sep-
arated data by region and estimated selection coefficients
jointly over all regions (Methods). After filtering regions
with low or infrequent coverage, our analysis included more
than 5.6 million SARS-CoV-2 sequences from 126 different
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Fig. 1. Our approach accurately estimates transmission effects of mutations
in simulations. Simulated epidemiological dynamics beginning with a mixed pop-
ulation containing variants with beneficial, neutral, and deleterious mutations. a,
Selection coefficients for individual SNVs, shown as mean values ± one theoret-
ical s.d., can be accurately inferred from stochastic dynamics in a typical simu-
lation (Supplementary Information). b, Extensive tests on 1,000 replicate simu-
lations with identical parameters show that inferred selection coefficients are cen-
tered around their true values. Deleterious coefficients are slightly more challenging
to accurately infer due to their low frequencies in data. Simulation parameters. The
initial population is a mixture of two variants with beneficial SNVs (s = 0.03), two
with neutral SNVs (s= 0), and two with deleterious SNVs (s=−0.03). The num-
ber of newly infected individuals per serial interval rises rapidly from 6,000 to around
10,000 and stays nearly constant thereafter. Dispersion parameter k is fixed at 0.1.

regions, containing 1,259 nonsynonymous SNVs observed at
nontrivial frequencies.

Our analysis revealed that, while the majority of SNVs
were nearly neutral, a few dramatically increased viral trans-
mission (Fig. 2a, Table 1). We observe clusters of SNVs
with strong effects on transmission along the SARS-CoV-
2 genome (Fig. 2b). The highest density of SNVs that in-
crease transmission is in Spike, especially in the S1 subunit
(Supplementary Fig. 3). Of the top 20 mutations that we
infer to be most strongly selected, 13 are in Spike (Table 1).
However, SNVs with a strong selective advantage are also
found in other proteins, especially in N, M, NSP4, and NSP6.

Mutations inferred to substantially increase transmission

The top 50 mutations inferred to increase SARS-CoV-2 trans-
mission the most are given in Table 1. Experimental evi-
dence exists to directly or indirectly support most of these
inferences. For clarity, we will reference mutations at the
amino acid level rather than the underlying SNVs, which are
also given in Table 1.

Spike mutations/deletions ∆142, P681R/H, R346K,
Q498R, L452Q, and K417N comprise seven of the top ten
mutations, and all have demonstrated functional effects that
could increase transmission4,26–36. Similarly, Spike muta-
tions in the receptor binding motif (RBM) such as N440K,
L452R, T478K, E484K, F486V, and N501Y appear promi-
nently in our analysis. All of these mutations have been
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Fig. 2. Inferred transmission effects of SARS-CoV-2 mutations. a, The majority
of the 1,259 nonsynonymous SNVs included in our study are inferred to have neg-
ligible effects on transmission (that is, ŝ close to zero). However, a few SNVs have
strong effects, as evidenced by a large value of ŝ. b, Patterns of selection across
the SARS-CoV-2 genome. Beneficial SNVs often cluster together in the genome.
Clustering is especially apparent for the S1 subunit of Spike, where many SNVs that
are inferred to have the largest effects on transmission are located.

shown to increase resistance to RBM-specific neutralizing
antibodies and the majority also enhance ACE2 receptor
binding4,29,31,34,37–39. Of these, N501Y (ŝ = 7.2%, ranked
17th) is shared by almost all major SARS-CoV-2 variants.
Beyond the functional effects above, this mutation is known
to increase transmission of infection40 and to help maintain
Spike in an active conformation for receptor recognition29.
Six Spike N-terminal domain (NTD) mutations/deletions
(T19I/R, ∆25, A67V, G142D, and ∆143) are also strongly
selected. These lie in the antigenic supersite where mutations
have been shown to decrease the neutralization potency of
NTD-specific monoclonal antibodies29,41. The well-known
Spike mutation D614G (ŝ= 3.2%, ranked 68th) falls just out-
side the top 50 mutations in Table 1. D614G has been shown
to increase binding affinity to the ACE2 receptor, thus in-
creasing viral load and likely contributing to increased trans-
mission7,42,43.

Research on viral transmission has naturally focused on
Spike because of its role in viral entry and as a target of
neutralizing antibodies. However, our analysis also reveals
strongly selected mutations outside of Spike. These include
the Nucleocapsid mutations R203M and D3L. R203M (ŝ =

10.4%, ranked 8th) is in the linker region of Nucleocapsid
and has been shown to enhance viral RNA replication, deliv-
ery, and packaging, which may increase transmission44. D3L
(ŝ = 8.4%, ranked 12th) has been reported to increase pro-
duction of a non-canonical subgenomic RNA that encodes for
ORF9b (ref.45), an interferon suppressing gene that can aid
innate immune evasion and thereby increase transmission46.

Our analysis identifies strongly selected mutations in Omi-
cron whose functional effects have not yet been fully ex-
plored (Table 1). Within Spike, these include mutations
near the S1/S2 furin cleavage site, including S704L (ŝ =
6.9%, ranked 19th), observed only in Omicron subvariant
BA.2.12.1, and N679K (ŝ = 4.9%, ranked 37th), observed
in all Omicron subvariants. The NTD mutation V213G and
deletion ∆25 (ŝ= 4.4% and 4%, ranked 43rd and 48th), both
observed in all Omicron subvariants except BA.1, are also
strongly selected. Outside Spike, top mutations/deletions in
all Omicron subvariants include the NSP4 T492I mutation
(ŝ = 15.5%, ranked 1st), also found in Lambda and Mu,
NSP6 deletion ∆106 (ŝ= 15%, ranked 2nd), observed also in
all variants of concern (VOCs) except Delta, and Nucleocap-
sid deletions ∆31-32 (ŝ = 7.3% and 7.2%, ranked 16th and
18th). These mutations may present good targets for future
functional studies.

Estimates of selection for major SARS-CoV-2 variants

We estimated the net increase in viral transmission relative to
the Wuhan-Hu-1 reference sequence for well-known SARS-
CoV-2 variants by adding contributions from the individual
variant-defining SNVs (Fig. 3 and Supplementary Fig. 4,
see Methods). Because our model uses global data and infers
the transmission effects of individual SNVs, variants can be
compared to one another directly even if they arose on dif-
ferent genetic backgrounds, or if they appeared in different
regions or at different times. This also allows us to infer sub-
stantially increased transmission for variants such as Gamma,
Beta, Lambda, and Epsilon, which never achieved the level
of global dominance exhibited by Alpha, Delta, or Omicron
(Supplementary Fig. 4).

Our findings are consistent with past estimates that have
shown a substantial transmission advantage first for Al-
pha and then for Delta relative to other pre-Omicron lin-
eages47–49. However, past estimates have varied substantially
depending on the data source and method of inference. In
different analyses Delta has been inferred to have an advan-
tage of between 34% and 97% relative to other pre-Omicron
lineages47,48,50. Similarly, Alpha has been estimated to in-
crease transmission by 29% to 90% relative to pre-existing
lineages in different regions5,11,12,47,51. One advantage of our
approach is that it can infer selection coefficients that best ex-
plain the growth or decline of variants across many regions,
allowing selection for different variants to be compared on
even footing.

At present, Omicron (BA.1) and related subvariants are
clearly inferred to be far more transmissible than past variants
(Fig. 3 and Table 2). The transmission advantage of BA.1
(ŵ = 197%), which we estimate to be the least transmissi-
ble of Omicron subvariants, is still more than twice as large
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Fig. 3. Multiple SARS-CoV-2 variants strongly increase transmission rate. Fre-
quencies of major variants and their total inferred selection coefficients, shown as
mean values ± one s.d. from bootstrap subsampling of regional data (Methods),
defined relative to the Wuhan-Hu-1 reference sequence. Selection coefficients for
variants with multiple SNVs are obtained by summing the effects of all variant-
defining SNVs.

as the inferred selection coefficient for Delta (ŵ = 93%).
BA.2, the most-prevalent Omicron subvariant worldwide as
of June 20, 2022, is estimated to have a transmission ad-
vantage of ŵ = 245%. We estimate the transmission advan-
tage of emerging Omicron subvariants (BA.2.12.1, BA.4, and
BA.5) to be higher than BA.2. Here the Spike RBD mutation
Q493R, shared by BA.1, BA.2, and BA.2.12.1, may play an
important role. While most Spike mutations in BA.1 are in-
ferred to be beneficial, our analysis suggests that Q493R is
deleterious (ŝ=−5.3%). This mutation has reverted in Omi-
cron subvariants BA.4 and BA.5 and significantly contributes
to their higher inferred transmissibility.

Though data is currently limited, we estimate some dif-
ferences in transmissibility between emerging Omicron sub-
variants BA.4, BA.5, and BA.5.1, which have identical Spike
mutations (Supplementary Fig. 5). Consistent with prelimi-
nary reports52,53, we estimate BA.5 to be more transmissible
than BA.4. Our approach suggests that the Membrane muta-
tion D3N (ŝ = 4.8%, ranked 39th, Table 1) which is exclu-
sive to BA.5, contributes to the increased transmissibility of
BA.5. We also estimate BA.5.1 to be slightly more transmis-
sible than BA.5 due to the ORF10 mutation L37F (ŝ= 2.5%,
ranked 100th), present only in BA.5.1. While more data will
be necessary to fully assess the transmission advantage of
these subvariants, our model enables identification of non-
Spike mutations that may play a role in conferring selective
advantage to emerging variants.

Rapid detection of variants with enhanced transmission

Rapidly identifying variants with increased transmission is
important to inform public health efforts to limit viral spread.
However, the inherent stochasticity of infection and of ge-
nomic surveillance data collection makes accurate inferences

difficult. For example, neutral or modestly deleterious vari-
ants may initially appear to be beneficial due to a transient
rise in frequency despite having no selective advantage.

To quantify how fluctuations affect estimates of selection
for neutral variants, we first identified all variants (including
both SNVs and collections of SNVs that are strongly linked
to one another, see Methods) that are inferred to have selec-
tion coefficients with magnitude less than 10% using all of
the data gathered until February 1, 2021. Here, we reasoned
that changes in transmissibility of 10% or more could fairly
be classified as “concerning.” We then calculated the selec-
tion coefficients that would have been inferred for the SNVs
or variants at all earlier time points and in all regions after
they were first observed in the data. This “null” distribution
(Fig. 4d) quantifies fluctuations in inferred selection coef-
ficients for quasi-neutral variants due to stochasticity in vi-
ral spread and sampling. Variants with selection coefficients
larger than any in the null distribution could then be expected
with high confidence to have a significant transmission ad-
vantage.

We then tested the effectiveness of our approach for auto-
matically detecting concerning variants using data gathered
from all regions until June 9, 2022 (Table 3). Ideally, we
should specifically identify concerning groups of mutations
without flagging ones that have little effect on viral transmis-
sion. While it is difficult to conclusively assign particular
detection events as true or false positives, we conservatively
assumed that all detections of groups of SNVs belonging to
major variants denoted by Greek characters are true positives,
and detections of any other SNVs (including mutations spe-
cific to AY lineages, B.1, and unnamed B.1 sublineages) are
false positives. Following this assumption, the positive pre-
dictive value of our method is 97%. This value could be yet
higher, however, as there is evidence that mutations associ-
ated with B.1 and B.1.1.318, including the well-known Spike
mutation D614G, increase viral transmission7,42,54,55.

To further explore our capacity to rapidly detect variants
with a transmission advantage, we studied the rise of the Al-
pha, Delta, and Omicron (BA.1) variants in specific regions.
Here, we focused specifically on novel mutations in these
variants, i.e., mutations that had not been observed in previ-
ous SARS-CoV-2 sequences. Using the above criterion, we
find that novel mutations in Alpha are likely to substantially
increase transmission using sequence data from London col-
lected on or before November 12, 2020 (Fig. 4a). This is
roughly three weeks before Public Health England labeled
Alpha as a variant of interest (VOI)56, and more than a month
before it was classified as a VOC57. At this time the fre-
quency of Alpha in London was around 2%.

Similar analyses show that our model rapidly infers in-
creased transmission for novel mutations in Delta and Omi-
cron. Using data from Great Britain, we infer Delta to sig-
nificantly increase transmission by April 15, 2021 (Fig. 4b).
Delta was classified as a VOI on April 4, 2021 and as a VOC
more than one month later on May 6, 2021 (ref.58). Omicron
was inferred to have a significant transmission advantage us-
ing sequence data from South Africa collected by October
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Fig. 4. Our model rapidly infers increased transmission for Alpha, Delta, and Omicron (BA.1). a, Frequency of Alpha in London and its inferred selection coefficient
over time. The inferred coefficient exceeds the largest one in the null distribution on November 12, 2020. b, Frequency of Delta in Great Britain and the inferred selection
coefficient for novel Delta SNVs over time. c, Frequency of Omicron in South Africa and the inferred selection coefficient for novel Omicron SNVs over time. d, The null
distribution of regional inferred selection coefficients for variants ultimately inferred to have selection coefficients |w| < 10% using global data, over all intermediate times
and across all regions.

24, 2021 (Fig. 4c). Omicron was designated a variant under
monitoring (VUM) on November 24, 2021 and a VOC two
days later59. At the time that we detected increased trans-
mission for Delta and Omicron, their frequencies were still
very low (< 2%) in Great Britain and South Africa, respec-
tively. Collectively, these results demonstrate our ability to
rapidly identify variants with higher transmission, even when
they represent a small fraction of all infections in a region
and when the influence of previously-observed mutations is
ignored.

Discussion

Quantifying the effects of mutations on viral transmission is
an important but challenging problem. To overcome limita-
tions of current methods, we developed a flexible, branch-
ing process-based epidemiological model that provides ana-
lytical estimates for the transmission effects of SNVs from
genomic surveillance data. Applying our model to SARS-
CoV-2 data, we identified SNVs that substantially increase
viral transmission, including both experimentally-validated
Spike mutations and other, less-studied mutations that may
be promising targets for future investigation. Importantly, we
found that our model is sensitive enough to detect substantial
transmission advantages for variants such as Alpha, Delta,
and Omicron even when they comprised only a small fraction
of the total number of infections in a region, thus providing
an “early warning” for more transmissible variants.

The epidemiological model that we have introduced has
limitations. We assumed that transmission takes place shortly
after infection, which is appropriate for a virus such as

SARS-CoV-2. Our approach would need to be modified
to consider the spread of viruses where many transmission
events are from long-term infections, such as HIV. We also
assume that SNVs contribute additively to fitness and that
selection coefficients are constant in time. Our model does
not delineate intrinsic (e.g., functional) effects of SNVs on
transmission from selection advantages due to immune es-
cape; though, for many of the SNVs inferred most strongly
to affect transmission, there is independent experimental ev-
idence to suggest that each (or both) of these factors are im-
portant (Table 1). Simulations show that if selection is time-
varying, the constant selection coefficients that we infer re-
flect averages of time-varying selection over the time that
the variant was observed (Supplementary Fig. 6). Epistasis
could also lead to over- or under-estimation of selection coef-
ficients for specific SNVs, but total contributions to transmis-
sion from multiple SNVs are typically estimated accurately
(Supplementary Fig. 7). We have also assumed that serial
intervals are constant in time, but variants may differ in the
typical time between infections60 which could influence rel-
ative growth rates. Further studies can extend our technical
approach to relax these assumptions.

Our ability to rapidly detect concerning new variants is
naturally limited by the public availability of sequence data.
Time lags between when sequencing is performed and when
sequences are uploaded, in particular, can lead to delays in
detection. When we filter sequences based on submission
date and repeat the analysis presented in Fig. 4, detection of
Alpha and Delta is pushed back by approximately 2.5 weeks
(Supplementary Fig. 8). For Omicron, the delay is larger:
inference using sequence data uploaded to GISAID on De-
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cember 7th, 2021 clearly shows an enormous transmission
advantage for this variant. However, one strength of our ap-
proach is that we are able to estimate the effects of individual
mutations on viral transmission. Thus, even in cases where
sequence data for a novel variant is limited, emerging variants
could be classified as concerning purely based on the pres-
ence of previously-observed mutations. For example, Alpha,
Delta, and Omicron (BA.1) would have had estimated selec-
tion coefficients of ŵ = 18%, 17%, and 66%, respectively,
immediately prior to their first observations in sequence data.
Nonetheless, reducing the time between when sequencing is
performed and when sequence data is publicly shared could
facilitate the detection of new variants with increased trans-
mission and help prepare for growing outbreaks.

While our study has focused on SARS-CoV-2, the epi-
demiological model that we have developed is very general.
The same methodology could be applied to study the trans-
mission of other pathogens such as influenza. Combined with
thorough genomic surveillance data, our model provides a
powerful method for rapidly identifying more transmissible
viral lineages and quantifying the contributions of individual
mutations to changes in transmission.
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Methods

Epidemiological model
We use a discrete time branching process to model the spread
of infection. Individuals can be infected by any one of M
viral variants, which are represented by genetic sequences
g = {g1,g2, . . . ,gL} of length L. For simplicity, we will
first assume that alleles at each site i in the genetic sequence
for variant a are either equal to the “wild-type” or reference
(gai = 0) or mutants (gai = 1). Later we will relax this assump-
tion to consider genetic sequences with 5 possible states at
each site (4 nucleotides or a gap). We call na(tm) the num-
ber of individuals infected by variant a at time tm. To ac-
count for super-spreading, the number of newly infected in-
dividuals at time tm+1 follows a negative binomial distribu-
tion61–66, P (na(tm+1)|na(tm),k,Ra) = PNB (r,p), where
r = nak, p= k/(k+Ra), and Ra =R(1+wa). Here r and
p are the negative binomial distribution parameters, k is the
dispersion, R is the effective reproductive number of the ref-
erence variant, and wa encodes the variant dependence of the
infectivity. The parameters n, k, and R can be time-varying.
For instance, a time-varying R represents change in the num-
ber of susceptible and recovered individuals as well as the
effects of public health interventions or changes in behavior
that modify viral transmission.

Defining the frequency of variant a as ya = na/
∑
bnb,

the probability that the frequency vector is y(tm+1) =
{y1(tm+1),y2(tm+1), . . .} given the initial frequency vector
y(t0), is

P ((y(tm))Tm=1|y(t0)) =
T−1∏
m=0

P (y(tm+1)|y(tm)) . (2)

Derivation of the estimator
Because (2) is difficult to work with directly, we follow the
approach of ref.67. We introduce a “diffusion approximation”
where we assume that the total number of infected individu-
als is large and the effects of mutations on transmission are
small. Similar approximations have been widely used in pop-
ulation genetics68–70. Under these assumptions, the probabil-
ity distribution for the variant frequencies satisfies a Fokker-
Planck equation with terms derived from the first and second
moments of the frequency changes ya(tm+1)−ya(tm) under
the negative binomial distributions above.

However, the genotype space is high-dimensional (dimen-
sion 2L, with either a mutant or wild-type allele at each site)

and undersampled, making inference of selection for geno-
types extremely challenging. To simplify the inference prob-
lem, we assume that selection is additive, so the total selec-
tion coefficient wa for a variant a is the sum of selection co-
efficients si for mutant alleles at each site i:

wa =
L∑
i=1

gai si .

We can then derive a Fokker-Planck expression for the dy-
namics of mutant allele frequencies

xi =
M∑
a=1

gai ya .

At the allele level, the Fokker-Planck equation has a drift
vector given by

di(x) = xi(1−xi)si+
L∑

j=1,j 6=i
(xij−xixj)sj , (3)

and a diffusion matrix

Cij =
(

1
k

+ 1
R

)
×

{
xij−xixj i 6= j

xi(1−xi) i= j
,

where xij is the frequency of infected individuals that have
mutant alleles at both site i and site j at time t. In deriving (3)
we have assumed that the selection coefficients satisfy si� 1
such that wa � 1. Despite this technical assumption, our
simulations demonstrate that selection can be accurately in-
ferred even when selection is strong (Supplementary Fig. 9).

The drift vector describes the expected change in allele fre-
quencies over time. Eq. (3) consists of two terms. The first
describes the expected change in the frequency of allele i due
to selection at that site. The second term accounts for link-
age, that is, it quantifies how the genetic background alters
the expected frequency change of an allele.

The Fokker-Planck equation can then be used to de-
rive a path integral, which expresses the probability
of an entire evolutionary history or “path” (i.e., fre-
quencies of genetic variants over time, x(tm)Tm=1).
In Supplementary Information, we derive the path
integral expression following a similar approach to
the one described in ref.67. The path integral is

P
(

(x(tm))Tm=1|x(t0),s,n
)
≈

(
T−1∏
m=0

1√
detC

(
n

2π∆tm

)L/2 L∏
i=1

dxi(tm+1)
)

exp
(
−n2S((x(tm)Tm=0)

)
, (4)

where S((x(tm)Tm=0) =
T−1∑
m=0

[
x(tm+1)−x(tm)

∆tm
−d(x(tm))

]
C−1(x(tm))

[
x(tm+1)−x(tm)

∆tm
−d(x(tm))

]
.
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Here n =
∑M
a=1na is the total number of individuals in-

fected by all variants and ∆tm = tm+1− tm. The path in-
tegral in (4) has a form that is similar to the one obtained in
ref.67. The path integral quantifies the probability density for
paths of mutant allele frequencies in the evolutionary history
of the pathogen. We can then use Bayesian inference to find
the maximum a posteriori estimate for the selection coeffi-
cients given the frequencies, the infected population size, the
parameters R and k. The posterior probability of the selec-
tion coefficients is

P
(
s|(x(tm),n)Tm=0

)
∝ P

(
(x(tm))Tm=1|x(t0),s,n

)
×PPrior(s) ,

(5)

where P
(
(x(tm))Tm=1|x(t0),s,n

)
is the probability

of a path given by (4) and the PPrior(s) is a Gaussian
prior probability for the selection coefficients with zero
mean and covariance matrix σ2I . Here, I is the identity
matrix and σ2 is the variance of the prior. We call the
precision γ = 1/σ2. In Supplementary Information we
show that the selection coefficients that maximize (5) are

ŝ=
[
γI+

T−1∑
m=0

nk2R2

(k+R)2 ∆tmC(tm)
]−1[T−1∑

m=0

nkR

k+R
(x(tm+1)−x(tm))

]
, (6)

where the parameters k, R, and n are implicitly functions
of t.

There are two interesting limiting forms of the estimator.
First, we define the new matrix C̄ whose entries are

C̄ij =
{
xij(tm)−xi(tm)xj(tm) i 6= j

xi(tm)(1−xi(tm)) i= j
. (7)

In the limit that k →∞, the negative binomial distribution
for new infections becomes a Poisson distribution with rate
λ = R. In this special case, the model is equivalent to the
Wright-Fisher model from population genetics. The estima-
tor reduces to

ŝ=
[
γI+

T−1∑
m=0

nR C̄

]−1[T−1∑
m=0

nR (x(tm+1)−x(tm))
]
.

The opposite limit k→ 0 corresponds to a distribution for
new infections with extremely heavy tails, i.e., one where
super-spreading is dominant. In this case the drift in (3),
which quantifies expected frequency changes due to selec-
tion, is unchanged. However, the diffusion matrix, which en-
codes linkage as well as the changes in frequency that are due
to the stochastic nature of infection transmission, diverges. In
this case, diffusion dominates the process entirely.

Simplifying the estimator and robustness to incom-
plete knowledge of time-varying parameters
While our model has the ability to account for the time de-
pendence of parameters appearing in (6), such as the infected
population size n, the dispersion k, and the mean reproduc-
tive number R, these can be challenging to reliably estimate
from data. However, we generally do not require full knowl-
edge of these time-dependent parameters to accurately esti-
mate selection.

In fact, due to finite sampling noise, estimates of selec-
tion produced by assuming constant (and incorrect) parame-

ters are more accurate than estimates that use the true time-
varying parameters (Supplementary Fig. 10). The naive es-
timator in (6) implies that time points or regions with larger
R, n, or k should be weighted more heavily in the estimate.
However, frequency information is always inaccurate due to
noise from finite sampling, so weighing some time points or
regions significantly more than others based upon the param-
eters alone means that undue weight is given to the uncertain
information available from these times and regions.

For this reason, we assume parameters that are spatially
and temporally constant in all of the following analysis as
discussed below. This allows the estimator to be simplified
substantially. If we assume constant parameters and scale the
regularization γ by nkR/(k+R) in the numerator in (6), the
parameter dependence in the numerator and the denominator
is identical and cancels out (due to the additional factor of
(k+R)/kR in the definition of the covariance matrix). With
the same definition of the matrix C̄ as above, and additionally
defining C̄int =

∑T−1
m=0 ∆tmC̄ and γ′ = γnkR/(k+R), the

simplified estimator is given by

ŝ=
[
γ′I+ C̄int

]−1 [x(tT )−x(t0)] . (8)

This form of the estimator is similar to the estimator for se-
lection coefficients in the Wright-Fisher model67, except that
it omits contributions from the mutation term, because the
mutation rate for SARS-CoV-2 is small. Practically, (8) has
significant advantages over (6). The most important is that
the difficult-to-estimate parameters k and n are no longer re-
quired. In addition, R does not need to be estimated. For
methods of inferring these parameters as well as discussions
about the difficulty of inferring them, see refs.71–80.

Extension to multiple regions and multiple SNVs at
each site
The model can easily account for outbreaks in multiple re-
gions or outbreaks at different times. If the probability of the
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evolutionary path in each region is independent, which is the
case if there is no travel between regions, then the probability
of all of the evolutionary paths in all of the regions is simply
the product of the probabilities of the paths in each region,
given by (4). Bayesian inference can be applied in the same
way as before, resulting in the estimator

ŝ=
[
γ′I+

Q∑
r=1

C̄r,int

]−1 [ Q∑
r=1

xr(tr,Tr )−xr(tr,0)
]
, (9)

where Q is the number of regions, tr is the time in region
r, tr,Tr is the final time in region r, tr,0 is the initial time
in region r, xr is the frequency in region r, and C̄r,int is the
scaled integrated covariance matrix in region r given by inte-
grating (7) over time. The estimator can further be extended
to allow for multiple different nucleotides at each site by sim-
ply letting each different nucleotide have its own entry in the
frequency vector xi. If there are J mutations at each site this
results in a frequency vector of length LJ , and a covariance
matrix of size LJ ×LJ . By convention, reference sequence
alleles have selection coefficients of zero, so the mutant allele
selection coefficients at each site are normalized by subtract-
ing the inferred coefficient for the reference allele.

Branching process simulations
We implemented the superspreading branching process for
the number of infected individuals in Python. We used a neg-
ative binomial distribution for the number of secondary infec-
tions caused by a group of individuals infected with the same
pathogen variant. To test how finite sampling affects model
estimates, we sampled ns genomes per time point to use for
analysis. We computed the single and double mutant frequen-
cies, xi and xij , respectively, from the sampled sequences
and estimated the selection coefficients from these using (1),
possibly extended to account for multiple outbreaks or multi-
ple alleles at each locus as described above. For the analysis
of how finite sampling affects estimates, shown in Supple-
mentary Fig. 10, we use the full version of the estimator
given by (6). For all other simulations, we assume that the
parameters n, k, and R are not known for inference and so
we use the simplified estimator in (9) for inferring selection.

Regions and time-series for SARS-CoV-2 analysis
We used sequence alignments and metadata downloaded
from GISAID (ref.81) on June 9th, 2022, which includes
more than 5.6 million sequences. One potential caution in
interpreting this data is that not all sequences in the database
will have been generated from unbiased surveillance efforts.

Ideally, we would like to divide this data into the small-
est separate areas that have outbreaks that are largely inde-
pendent of those in the surrounding regions, so as to avoid
biases due to travel between regions or unequal sampling in
different locations. However, this needs to be balanced with
the limitations of the data, since regions with poor sampling
could contribute more noise than signal. We therefore di-
vided data into the smallest regions available in the meta-
data that are still large enough such that infections resulting

from travel outside of the region are likely to be far less fre-
quent than transmission within the region. This results in the
inclusion of mostly separate countries in Europe and Asia
and states in North America. Two exceptions to this are that
we separate northern and southern California due to the ge-
ographical separation of population centers, and we separate
Northern Ireland from the rest of the United Kingdom due to
its geographical isolation.

To minimize the effects of sampling noise, we chose re-
gions and time-series within these regions based on the fol-
lowing criteria:

1. In any period of 5 days within the time-series there are
at least 20 total samples.

2. The number of days in the time-series is greater than
20.

3. The number of new infections per day is at least 100.

The last criterion ensures that there are enough infected in-
dividuals that transmission is not driven overwhelmingly by
stochasticity. We assessed the number of newly infected in-
dividuals by using the estimates provided by the Institute of
Health Metrics and Evaluations82. Since the dates provided
in their estimates correspond to dates when individuals were
infected, and dates in the GISAID sequence data correspond
to dates when individuals were sequenced, we shifted the
dates in the IHME data 5 days forward to roughly compen-
sate for delays between infection and sequencing. We then
eliminated days on which the estimated number of new in-
fections was smaller than 100.

Our results are robust to reasonable variation in these pa-
rameters. Comparing the number of locations used and the
sample sizes shown in Supplementary Fig. 11 in the data
to those used in the simulations shown in Supplementary
Fig. 1, we expect our inference to accurately distinguish ben-
eficial, deleterious, and neutral SNVs from one another.

Data processing
We perform a number of preprocessing steps to ensure data
quality. We first eliminated incomplete sequences with gaps
or ambiguous nucleotides at more than 1% of the genome.
We then removed sites from our analysis where gaps are ob-
served at > 95% frequency, since these sites may represent
very rare insertions or sequencing errors. We also removed
sites in noncoding regions of the SARS-CoV-2 genome and
ones where all observed SNVs are synonymous. We imputed
gaps that are not associated with known variants and ambigu-
ous nucleotides with the nucleotide at the same site that oc-
curs most frequently in other sequences from the same re-
gion.

For the remaining sites, in each region we excluded rare
SNVs whose frequency is not larger than 1% for at least 5
consecutive days. These sites, if included, are almost always
inferred to have extremely small selection coefficients. Fur-
thermore, since their frequencies are so small, their covari-
ance with other sites is also small and is therefore unlikely
to have a large effect on inference. We verified that different
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reasonable values for these cutoffs result in essentially iden-
tical selection coefficients (Supplementary Fig. 12).

Calculating frequency changes and covariances
To increase robustness to finite sampling in time, we inte-
grated terms in (6) and other time-dependent equations over
time by assuming that frequencies are piecewise linear, rather
than summing contributions from each time point67. This

results in diagonal terms of the integrated covariance being
calculated as

T−1∑
m=0

∆tm
[

(3−2xi(tm+1))(xi(tm) +xi(tm+1))
6 − x

2
i (tm)

3

]
,

and off-diagonal elements being calculated as

T−1∑
m=0

∆tm
[
xij(tm) +xij(tm+1)

2 −
xi(tm)xj(tm) +xi(tm+1)xj(tm+1)

3 −
xi(tm)xj(tm+1) +xi(tm+1)xj(tm)

6

]
.

For obtaining reliable estimates of the changes in SNV fre-
quencies (the term x(tT )− x(t0) in (8)), it is important to
have enough sequences to avoid large errors due to finite sam-
pling. On the other hand, if a large number of days are used at
the end or the start of the time-series to calculate the frequen-
cies, then the frequency changes are likely underestimates.
To balance these competing issues, we calculated x(tT ) as
the frequencies in the window of the final 15 days and x(t0)
as the frequencies in the window of the first 15 days for each
time-series and region with poor sampling. This smoothing
is necessary especially in regions where sampling is sparse,
where the number of genomes sampled on a particular day
may be as small as 1 or 2. If there are at least 200 sampled
sequences in a period of less than 15 days at the start or the
end of the time-series, then the window size was taken as
the smallest number of days in which there was a total of at
least 200 sequences. We confirmed that our results are ro-
bust to reasonable changes of this window size of 15 days
(Supplementary Fig. 12).

We also normalized time in units of serial intervals or
“generations” by dividing the integrated covariance matrix
by 5, following results that the serial interval for SARS-CoV-
2 is roughly 5 days83–85. This allows us to convert from units
of time in days to generations, as in (8).

Calculating selection coefficients

After the above preprocessing there remain 1,259 SNVs ob-
served at a frequency above 1% for at least 5 consecutive
days in at least one region and observed at least 5 times. We
assume constant values for R, n, and k in all regions, and
use (9) to estimate selection. When R, n, and k are constant,
these terms can be effectively absorbed into the regulariza-
tion γ′.

We normalize selection coefficients such that the nu-
cleotide for the Wuhan-Hu-1 reference sequence at each site
has a selection coefficient of 0. To do this, we subtract the
selection coefficient for the reference nucleotide from the in-
ferred coefficient for each other allele at that site after all se-
lection coefficients have been computed.

In order to quantify selection for groups of SNVs that fre-
quently appear together, one must be able to determine what
SNVs are closely linked. To determine sets of strongly linked
SNVs, we considered the following statistics. If the number
of genomes with a SNV at site i is called hi and the number
of genomes with SNVs at both site i and site j is hij , then
we say that two sites i and j are strongly linked if hij/hi and
hij/hj are both greater than 80%.

To form sets of strongly linked SNVs, we combined all
pairs of strongly linked SNVs that share SNVs in common.
For example, if SNV i is strongly linked with SNV j, and
SNV j is strongly linked with SNV k, then {i, j,k} forms
one set of strongly linked SNVs. With the frequency cutoff
that we have used for the definition of strongly linked SNVs
(80%), the great majority of SNVs in each set of strongly
linked SNVs are strongly linked to all other SNVs in the same
set.

As for the major variants, we computed selection coeffi-
cients for sets of strongly linked SNVs by summing the con-
tributions from individual SNVs. Selection coefficients for
strongly linked SNVs were used to compute the “null” distri-
bution that we use as a metric for early detection of variants
with increased transmission.

We used these estimates for the selection coefficients for
nonsynonymous SNVs to estimate the corresponding selec-
tion coefficients for amino acid substitutions (Table 1). If
there were multiple SNVs in a codon that result in the same
amino acid variant, but are not strongly linked to one another,
then the selection coefficient for the amino acid was calcu-
lated as the largest (in absolute value) of the SNVs. If there
were multiple SNVs in the same codon that yield the same
amino acid and these SNVs are strongly linked to one an-
other, then the selection coefficient for the mutant amino acid
was calculated as the sum of the selection coefficients for the
SNVs.

We calculated selection coefficients for major variants by
summing the individual nucleotide SNVs that define the vari-
ant, which follows from our assumption of additive fitness.
The SNVs for major named variants such as Alpha and
Delta were identified according to the mutations provided by
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https://covariants.org.
We also computed selection coefficients for collections of

strongly linked SNVs that may not be officially-designated
variants.

Computational complexity
Here we briefly discuss the computational complexity of our
method. The steps in our data processing are

1. Clean the data (eliminate sequences with large num-
bers of Ns or gaps, etc.).

2. Separate the data by time and region.
3. Identify SNVs observed above the minimum frequency

threshold.
4. Compute SNV covariance matrices/changes in SNV

frequencies in each region and integrate them over
time.

5. Infer the selection coefficients, which involves invert-
ing the total integrated SNV covariance matrix.

Let L be the length of the SARS-CoV-2 sequence (roughly
3× 104 bps) and let M be the total number of sequences
(roughly 107 including data taken up until June 9th, 2022).
Then, steps 1 and 2 involve computations that scale asO(M).
Step 3 is O(ML). This step also introduces a new parameter
relevant for the scaling of the problem, which is the fraction
of SNVs that are observed at high enough frequencies to be
included in our analysis. Let us call this fraction p, which is
roughly 0.35 with our current settings. Naively, step 4 then
involves a computation that scales like O(M(pL)2). How-
ever, the calculation of the covariance can easily be paral-
lelized across regions. In each individual region, the frac-
tion of SNVs that are observed at high enough frequencies
to be included is a different parameter q and the number of
sequences in the region is a parameter Mr. The largest q that
we find in the regions analyzed is around 0.05. For Nr sep-
arate regions (127 in our analysis), step 4 then involves Nr
parallel computations that scale like O(Mr(qL)2). Due to
the matrix inversion, step 5 requires O((pL)3) computations
to complete.

Choice of regularization
In principle, the regularization strength γ′ is related to the
width of the prior distribution for SNV selection coefficients.
The regularization strength also plays a role in reducing noise
in selection coefficient estimates due to finite sampling of vi-
ral sequences. This is especially important for SNVs that are
observed only briefly in data, as they will have small inte-
grated variances in the “denominator” of (6). Larger values
of the regularization more strongly suppress noise, but they
also shrink inferred selection coefficients towards zero.

We use a regularization strength of γ′ = 40. For much
smaller values of γ′, selection coefficient estimates are un-
stable due to sampling noise. However, inferred selection
coefficients stabilize and become insensitive to the precise
value of γ′ for γ′ & 10 (Supplementary Fig. 12). Larger
values of γ′ will result in selection coefficients with smaller
absolute values, but for large enough γ′ the rank ordering of

inferred selection coefficients is highly reliable. In summary,
the coefficients that appear to be the most beneficial or dele-
terious remain this way regardless of reasonable choices for
γ′, though their precise values scales with the regularization
strength.

Rapid detection of variants with increased transmis-
sion
To estimate how quickly we can detect a transmission ad-
vantage for a new SNV or variant, selection coefficients are
calculated only in the specific region where the variant arose.
Since inference is only done in a single region, SNVs that
appear only briefly at low frequencies —and which there-
fore are unlikely to change transmission rate —only appear
once, whereas in the global analysis such SNVs may appear
at low frequencies in multiple regions. For this reason we use
a lower regularization of 10 for regional analysis. The null
distribution is calculated by first finding all variants (includ-
ing one or more SNVs) that are inferred to have a selection
coefficient of absolute value less than 10% using the joint
inference over all regions with data collected until February
1st, 2021. We then calculated the selection coefficients that
would have been inferred for these variants at all earlier time
points in each region after they were first observed in that re-
gion. We can then say with high confidence that a variant
significantly increases transmission once the inferred coeffi-
cient for that variant in a specific region surpasses any of the
inferred coefficients in the null distribution.

Data and code
Sets of processed data, computer code, and scripts that we
have used in our analysis are available in the GitHub repos-
itory located at https://github.com/bartonlab/paper-SARS-
CoV-2-inference. This repository also contains Jupyter note-
books that can be run to reproduce the results presented here,
using sequence data and metadata from GISAID. A full list
of originating and submitting laboratories for the sequences
used in our analysis can be found at https://www.gisaid.org
using the EPI-SET-ID: EPI_SET_20220719kb.

References
61. Irwin, J. A distribution arising in the study of infectious diseases. Biometrika

41, 266–268 (1954).
62. Griffiths, D. Maximum likelihood estimation for the beta-binomial distribution

and an application to the household distribution of the total number of cases
of a disease. Biometrics 29, 637–648 (1973).

63. Lipsitch, M. et al. Transmission dynamics and control of severe acute respira-
tory syndrome. Science 300, 1966–1970 (2003).

64. Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading
and the effect of individual variation on disease emergence. Nature 438, 355–
359 (2005).

65. Althouse, B. M. et al. Superspreading events in the transmission dynamics of
SARS-CoV-2: Opportunities for interventions and control. PLOS Biology 18,
1–13 (2020).

66. Endo, A., Abbott, S., Kucharski, A. J., Funk, S. et al. Estimating the overdisper-
sion in COVID-19 transmission using outbreak sizes outside China. Wellcome
Open Research 5, 67 (2020).

67. Sohail, M. S., Louie, R. H. Y., McKay, M. R. & Barton, J. P. MPL resolves ge-
netic linkage in fitness inference from complex evolutionary histories. Nature
Biotechnology 39, 472–479 (2021).

68. Kimura, M. Diffusion models in population genetics. Journal of Applied Prob-
ability 1, 177–232 (1964).

69. Ewens, W. J. Mathematical Population Genetics 1: Theoretical Introduction
(Springer Science & Business Media, 2012).

12

https://covariants.org
https://github.com/bartonlab/paper-SARS-CoV-2-inference
https://github.com/bartonlab/paper-SARS-CoV-2-inference
https://www.gisaid.org


70. Malaspinas, A.-S., Malaspinas, O., Evans, S. N. & Slatkin, M. Estimating allele
age and selection coefficient from time-serial data. Genetics 192, 599–607
(2012).

71. Zhao, S. et al. Preliminary estimation of the basic reproduction number of
novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven
analysis in the early phase of the outbreak. International Journal of Infectious
Diseases 92, 214–217 (2020).

72. Systrom, K., Vladek, T. & Krieger, M. Model powering rt.live. https://
github.com/rtcovidlive/covid-model (2020).

73. Dietz, K. The estimation of the basic reproduction number for infectious dis-
eases. Statistical Methods in Medical Research 2, 23–41 (1993).

74. D’Arienzo, M. & Coniglio, A. Assessment of the SARS-CoV-2 basic repro-
duction number, R0, based on the early phase of COVID-19 outbreak in Italy.
Biosafety and Health 2, 57–59 (2020).

75. Delamater, P. L., Street, E. J., Leslie, T. F., Yang, Y. T. & Jacobsen, K. H. Com-
plexity of the basic reproduction number (R0). Emerging Infectious Diseases
25, 1–4 (2019).

76. Clark, S. J. & Perry, J. N. Estimation of the negative binomial parameter κ by
maximum quasi-likelihood. Biometrics 45, 309–316 (1989).

77. Saha, K. & Paul, S. Bias-corrected maximum likelihood estimator of the neg-
ative binomial dispersion parameter. Biometrics 61, 179–185 (2005).

78. Hilbe, J. M. Negative binomial regression (Cambridge University Press, 2011).
79. Miller, A. C. et al. Statistical deconvolution for inference of infection time series.

medRxiv 2020.10.16.20212753 (2020).
80. Manski, C. F. & Molinari, F. Estimating the COVID-19 infection rate: Anatomy

of an inference problem. Journal of Econometrics 220, 181–192 (2021).
81. Elbe, S. & Buckland-Merrett, G. Data, disease and diplomacy: GISAID’s inno-

vative contribution to global health. Global Challenges 1, 33–46 (2017).
82. Institute of health metrics and evaluation, SARS-CoV-2 estimates of

newly infected per day. URL http://www.healthdata.org/covid/
data-downloads.

83. Pung, R. et al. Investigation of three clusters of COVID-19 in Singapore: Im-
plications for surveillance and response measures. Lancet 395, 1039–1046
(2020).

84. Du, Z. et al. Serial interval of COVID-19 among publicly reported confirmed
cases. Emerging Infectious Diseases 26, 1341 (2020).

85. Hussein, M. et al. Meta-analysis on serial intervals and reproductive rates for
SARS-CoV-2. Annals of Surgery 273, 416–423 (2021).

86. Cui, Z. et al. Structural and functional characterizations of infectivity and im-
mune evasion of SARS-CoV-2 Omicron. Cell 185, 860–871.e13 (2022).

87. Xia, H. et al. Evasion of type I interferon by SARS-CoV-2. Cell Reports 33,
108234 (2020).

88. Suryadevara, N. et al. Neutralizing and protective human monoclonal antibod-
ies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell
184, 2316–2331.e15 (2021).

89. Saito, A. et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta
P681R mutation. Nature 602, 300–306 (2021).

90. Iketani, S. et al. Antibody evasion properties of SARS-CoV-2 Omicron sublin-
eages. Nature 604, 553–556 (2022).

91. Hong, Q. et al. Molecular basis of receptor binding and antibody neutralization
of Omicron. Nature 604, 546–552 (2022).

92. Starr, T. N. et al. Shifting mutational constraints in the SARS-CoV-2 receptor-
binding domain during viral evolution. bioRxiv 2022.02.24.481899 (2022).

93. Li, Q. et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity
and antigenicity. Cell 182, 1284–1294 (2020).

94. Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron
infection. Nature (2022).

95. Deng, X. et al. Transmission, infectivity, and neutralization of a spike L452R
SARS-CoV-2 variant. Cell 184, 3426–3437.e8 (2021).

96. Syed, A. M. et al. Rapid assessment of SARS-CoV-2 evolved variants using
virus-like particles. Science 374, 1626–1632 (2021).

97. Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutral-
izing antibodies. Nature 602, 657–663 (2022).

98. Mohammad, A., Abubaker, J. & Al-Mulla, F. Structural modelling of SARS-
CoV-2 Alpha variant (B.1.1.7) suggests enhanced furin binding and infectivity.
Virus Research 303, 198522 (2021).

99. Lista, M. J. et al. The P681H mutation in the spike glycoprotein confers type
I interferon resistance in the SARS-CoV-2 alpha (B.1.1.7) variant. bioRxiv
2021.11.09.467693 (2021).

100. Parker, M. D. et al. Altered subgenomic RNA expression in SARS-CoV-2
B.1.1.7 infections. bioRxiv 2021.03.02.433156 (2021).

101. Greaney, A. J. et al. Mapping mutations to the SARS-CoV-2 RBD that escape
binding by different classes of antibodies. Nature Communications 12, 4196
(2021).

102. Tuekprakhon, A. et al. Antibody escape of SARS-CoV-2 Omicron BA.4 and
BA.5 from vaccine and BA.1 serum. Cell 185, 2422–2433.e13 (2022).

103. Liu, C. et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and
convalescent serum. Cell 184, 4220–4236.e13 (2021).

104. McCallum, M. et al. N-terminal domain antigenic mapping reveals a site of
vulnerability for SARS-CoV-2. Cell 184, 2332–2347.e16 (2021).

105. Ramirez, S. et al. Overcoming culture restriction for SARS-CoV-2 in human
cells facilitates the screening of compounds inhibiting viral replication. Antimi-
crobial Agents and Chemotherapy 65 (2021).

106. Wang, X. et al. 35B5 antibody potently neutralizes SARS-CoV-2 Omicron by
disrupting the N-glycan switch via a conserved spike epitope. Cell Host and
Microbe 30, 887–895.e4 (2022).

107. Cerutti, G. et al. Cryo-EM structure of the SARS-CoV-2 Omicron spike. Cell
Reports 38, 110428 (2022).

108. Escalera, A. et al. Mutations in SARS-CoV-2 variants of concern link to in-
creased spike cleavage and virus transmission. Cell Host and Microbe 30,
373–387.e7 (2022).

109. de Silva, T. I. et al. The impact of viral mutations on recognition by SARS-
CoV-2 specific T cells. iScience 24 (2021).

110. Dejnirattisai, W. et al. Antibody evasion by the P.1 strain of SARS-CoV-2.
Cell 184, 2939–2954.e9 (2021).

111. Hodcroft, E. B. et al. Spread of a SARS-CoV-2 variant through Europe in the
summer of 2020. Nature 595, 707–712 (2021).

112. Tada, T. et al. Increased resistance of SARS-CoV-2 Omicron variant to neu-
tralization by vaccine-elicited and therapeutic antibodies. eBioMedicine 78,
103944 (2022).

13

https://github.com/rtcovidlive/covid-model
https://github.com/rtcovidlive/covid-model
http://www.healthdata.org/covid/data-downloads
http://www.healthdata.org/covid/data-downloads


0 25 50 75 100 125 150 175 200
Samples per generation

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
RO

C

Beneficial
Deleterious

0 25 50 75 100 125 150 175 200
Generations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
RO

C

Beneficial
Deleterious

1 5 10 15 20
Number of independent outbreaks

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
RO

C

Beneficial
Deleterious

100 400 700 1000
Population size

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
RO

C

Beneficial
Deleterious

a b

c d

Supplementary Fig. 1. Accuracy of inference for different parameters. How the AUROC scores for both beneficial SNVs (in red) and deleterious SNVs (in blue) depends
upon the different model parameters. a, Inference accuracy for different values of newly-infected population size. The parameters used are 10 simulations each with 50
sampled genomes per generation for 25 generations. b, Inference accuracy for different numbers of generations (serial intervals). Data is from a single simulation with 25
samples per generation and a newly-infected population size of 10,000. c, Inference accuracy for different numbers of independent outbreaks (simulations). The parameters
used are 50 samples per generation for 10 generations and a newly-infected population size of 10,000. d, Inference accuracy for different values of samples per generations.
Data is from a single simulation with 50 generations with a newly-infected population size of 10,000. The initial population is a mixture of two variants with beneficial SNVs
(s= 0.03), two with neutral SNVs (s= 0), and two with deleterious SNVs (s=−0.03). Dispersion parameter k is fixed at 0.1. This is the same initial population composition
as described in Fig. 1. All AUROC scores are calculated by averaging over 1,000 replicate simulations.
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Supplementary Fig. 2. Inference is robust to variation of reproduction number, R, across regions. Our approach provides a systematic way to combine data from
outbreaks in multiple regions. Simulations show that the estimator in (9) has good performance whether the selection coefficients are inferred based on data from, a, a single
region or, b, five regions. Simulation parameters. The initial population in each region is a mixture of a neutral variant with no mutations and a variant with a beneficial SNV
(s = 0.05). The same beneficial SNV appears in all 5 regions. Each region has a different profile of the time-varying reproduction number, R (rightmost panel). In the first
simulation, the number of newly infected individuals per serial interval rises rapidly from 6,000 to around 10,000 and stays nearly constant thereafter. While in the second
simulation it has a different profile for each region, all the while staying between 100 and 100,000. Dispersion parameter k is fixed at 0.1 for both simulation scenarios.
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Supplementary Fig. 3. Inferred selection coefficients for Spike mutations mapped on the crystal structure. The majority of the inferred strongly selected mutations
are in the S1 subunit of Spike. For sites with multiple mutations, the mutation with the largest magnitude of inferred selection coefficient was used for mapping. Structure of
the Spike protein was obtained from http://rcsb.org/ (PDB ID: 7WG7) (ref. 86).
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Supplementary Fig. 4. Multiple SARS-CoV-2 variants strongly increase transmission rate. Frequencies of major variants and their total inferred selection coefficients,
shown as mean values± one s.d. from bootstrap subsampling of regional data (Methods), defined relative to the Wuhan-Hu-1 reference sequence. Selection coefficients for
variants with multiple SNVs are obtained by summing the effects of all variant-defining SNVs. Because our method uses global data and accounts for competition between
variants, we infer large transmission advantages even for variants such as Gamma, Beta, Lambda, and Epsilon, which never achieved the same level of global dominance as
variants such as Alpha and Delta.
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Supplementary Fig. 5. Non-Spike mutations/deletions in the emerging Omicron sub-variants BA.4, BA.5, and BA.5.1 and their associated inferred selection. The
list of all mutations (both Spike and non-Spike) associated with these variants is provided in Table 2.
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Supplementary Fig. 6. Average value inferred for time-varying selection coefficients. We simulated five scenarios of time-varying selection coefficients: a, step varying,
b, linearly increasing, c, linearly decreasing, d, constant over time and, e, step varying where the SNV appears in the population after the true selection coefficient has
changed. In each case, the inferred selection coefficient is close to the average of the time-varying selection coefficient over the time when the SNV was present in the
population. Simulation parameters. The initial population in the first four simulation scenarios is a mixture of a neutral variant with no mutations and a variant with a beneficial
SNV with a time-varying selection coefficient (center panels). In the fifth simulation scenario, the initial population consists entirely of the neutral variant with the beneficial
mutant appearing after 15 serial intervals. The number of newly infected individuals per serial interval rises rapidly from 6,000 to around 10,000 and stays nearly constant
thereafter. Dispersion parameter k is fixed at 0.1 for all simulation scenarios.
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Supplementary Fig. 7. Accurate inference of variant fitness in presence of epistasis. a, Both SNV selection coefficients and variant selection coefficients are inferred
accurately in absence of epistasis. Inferred selection coefficients over 1,000 runs are shown in box plots, with true values for the parameters shown with solid bars in red.
The lower and upper edge of the box plot correspond to the 25th to 75th percentiles, the bar inside the box plot corresponds to the median while the top and bottom whiskers
show the maximum and minimum value within 1.5 times the interquartile range. In scenarios with positive epistasis (b) or negative epistasis (c), our method attributes the
effect of epistasis to selection coefficients. Thus, while the inferred SNV selection coefficients may be under- or over-estimated, the inferred variant selection coefficients
are recovered. Simulation parameters. We simulate a two-locus system where the initial population consists of a mixture of all four variants, i.e., a neutral variant with no
mutations, a variant with two beneficial SNVs (s1 = 0.04, s2 = 0.02), and both single SNV variants. The initial frequencies in the population of the neutral, the two single
mutant variants, and the double mutant variants are set to 67%, 10%, 10% and 13%. We simulate three scenarios with the epistasis term taking on values s12 = {0, 0.04,
-0.04}. Here the selection coefficient for the double mutant is s1 + s2 + s12. The number of newly infected individuals per serial interval rises rapidly from 6,000 to around
10,000 and stays nearly constant thereafter. Dispersion parameter k is fixed at 0.1 for all simulation scenarios.
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Supplementary Fig. 8. Detection of significantly increased transmission for Alpha, Delta, and Omicron with GISAID sequence data filtered by submission date.
a, Inferred selection coefficient for novel Alpha SNVs over time using sequence data from London, filtered by submission date to GISAID. b, Inferred selection coefficient
for novel Delta SNVs using sequence data in Great Britain, filtered by GISAID submission date. c, Inferred selection coefficient for novel Omicron SNVs over time using
sequence data from South Africa, filtered by GISAID submission date.
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Supplementary Fig. 9. Ability to estimate large variant selection coefficients,wa. While the estimate (9) is derived assuming selection coefficients are small, simulations
show that combining data from multiple regions allows for accurate estimation of both large SNV selection coefficients, s, and variant selection coefficients,wa. a, A scenario
with a variant containing a single strongly beneficial SNV (s = 0.2) and, b, a scenario with a variant containing 10 mildly beneficial SNVs (s = 0.02). The true variant
selection coefficient wa has the same magnitude in both simulation scenarios (wa = 0.2). c, Simulating a scenario where 12 beneficial SNVs (s = 0.1) appear and fixate
successively (top right panel), such that wa ranges from 0.1 to 1.2, both the SNV (left panel) and variant selection coefficient (bottom right panel) were estimated accurately.
Results are obtained by combining data from 10 regions. Histograms are obtained from 1,000 replicate simulations. Simulation parameters. In the simulation scenarios
considered in a and b, the initial population in each region consists of a mixture of a neutral variant with no mutations along with a variant with a single strongly beneficial SNV
(s = 0.2), or a variant with 10 beneficial SNVs (s = 0.02) respectively. In the simulation in c, each region’s initial population consists of a mixture of a neutral variant with no
mutations along with a variant with beneficial mutations. In this latter variant, 12 beneficial mutations (s = 0.1) appear and fixate in succession such that the variant selection
coefficient varies from wa = 0.1 to wa = 1.2. The same variant appears in 10 independent regions in all simulation scenarios. The number of newly infected individuals per
serial interval is nearly constant around 10,000. Dispersion parameter k is fixed at 0.1.
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Supplementary Fig. 10. Effects of finite sampling on inference using constant and time-varying parameters. The ability of the model to distinguish beneficial and
deleterious SNVs, as measured by the AUROC score, depending on whether the sampling is perfect or finite and whether constant parameters or the true time-varying
parameters are used for the number of new infections per serial interval n in the inference. If parameters are considered to be constant, then these parameters are not
required for inference using (8). Both simulations use constant values of k = 0.01 and R= 1. The results are similar but less dramatic if the correct time-varying values are
used for k or R as well. Results are shown for different trajectories of numbers of infections and are consistent regardless of the trajectory. In the upper panel, the number
of new infections per serial interval, n, starts at 5,000 and rises linearly to 100,000. In the middle panel, n starts at 10,000, rises quadratically to a maximum of 200,000,
and then falls back to the original number. In the final panel, n rises from an initial size of 1,000 to a final size of 65,000. All simulations are run for 50 serial intervals.
Rows that yield better inference are marked by bold text. If sampling is finite, then it is better to use constant parameters; if sampling is perfect, then it is better to use the real
time-varying parameters. The initial population of individuals are infected with a mixture of two variants with beneficial SNVs (s = 0.03), two with neutral SNVs (s = 0), and
two with deleterious SNVs (s = −0.03), as in Fig. 1. Simulations are run for 50 simulations with 25 samples in each serial interval, and AUROC scores are averaged over
1,000 replicate simulations.
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Supplementary Fig. 11. Sampling Distributions. The number of genomes per day in the regions that are used for inference.
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Supplementary Fig. 12. Inferred selection coefficients are robust to different values of the regularization γ′, different frequency cutoffs, and different numbers
of days used to calculate the frequency changes. a-b, Comparison of inferred coefficients when the number of days at the beginning and end of the time-series are
used in order to calculate the frequency changes. Inferred coefficients are largely robust to these changes c-d, Comparison of inferred coefficients for different frequency
cutoffs. Including more or less sites does not alter the order of inferred coefficients. e-i, Comparison of inferred coefficients for different values of the regularization. Altering
the regularization value has little effect upon the distribution of inferred selection coefficients, and selection coefficients for different values of the regularization are highly
correlated.
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Supplementary Fig. 13. Selection coefficient estimates and uncertainty. Plots of all inferred selection coefficients with absolute values greater than 1%. a, Selection
coefficients with uncertainty estimates from bootstrapping the sequences in each region. 20 sequences were sampled per time point per region, with replacement. Error bars
represent standard deviations of the inferred coefficients computed over 100 bootstrap samples. b, Selection coefficients with uncertainty estimates from subsampling the
regions used. For each run, we inferred selection coefficients using a random subsample of 80% of the total number of regions. Error bars represent standard deviations of
the inferred coefficients computed over 100 samples.
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Supplementary Fig. 14. Correlations between ŝ for strongly linked subsets of mutations defining major variants. As discussed in Supplementary Information, the
covariance of the inferred parameters is given by the matrix in (S5). The correlation matrix of the inferred parameters is easily calculated from this covariance. SNV labels
are in the format of xxx-yyy-z-n, where xxx is the protein, yyy is the codon in the protein, z is the index of the nucleotide in the codon, and n is the nucleotide. a, c, e, The
correlation matrix for SNVs that are strongly linked to one another in Alpha, Delta, and Omicron, respectively. The diagonal elements, all equal to 1 in a correlation matrix, are
set to zero for visualization purposes. b, d, f, Correlation matrices from a, c, and e, normalized by the maximum possible correlation for a group of linked SNVs, as discussed
in Supplementary Information, with the same number of SNVs. The (i, j)th element of these matrices represents the percent of linkage between the selection coefficients
for SNVs i and j.
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Rank Protein Mutation(s) Mutation Selection Location Associated variant(s) Phenotypic effect
(nt) (aa) (%)

1 NSP4 C10029T T492I 15.5±0.9 Lambda, Mu, BA.1, BA.2, BA.4, BA.5, BA.2.12.1
2 NSP6 T11288-90 S106- 15±1.0 Alpha, Beta, Gamma, Eta, Iota, Lambda, BA.1,

BA.2, BA.4, BA.5, BA.2.12.1
*Increased transmission by interferon antagonism 87

3 S ∆21986-88 G142- 13.5±1.2 NTD BA.1 *Increased resistance to NTD-specific nAbs 88

4 S C23604G P681R 12.1±1.8 FCS Delta, Kappa Enhanced cleavage, fusogenicity, and pathogenicity 89

5 S G22599A R346K 12.1±0.5 RBD Mu Reduced neutralization 90

6 S A23055G Q498R 11.7±1.2 RBM BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Increased ACE2 binding and resistance to nAbs 86,91

7 S T22917A L452Q 10.4±0.6 RBM Lambda, BA.2.12.1 Increased RBD expression (stability) 92, increased resistance
to nAbs 93,94, and increased cell entry 95

8 N G28881T R203M 10.4±1.7 Delta, Kappa Enhanced replication, RNA delivery and packaging 96

9 S G22813T K417N 9.2±0.9 RBD Beta, BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Increased ACE2 binding 92 and resistance to nAbs 86,97

10 S C23604A P681H 9.1±0.8 FCS Alpha, Mu, BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Enhanced cleavage 98 and increased resistance to interferon-
induced immunity 99, leading to increased replication and/or
transmission

11 S ∆21989-91 V143- 8.7±1.2 NTD BA.1 Increased resistance to NTD-specific nAbs 88

12 N G28280C,
A28281T,
T28282A#

D3L 8.4±0.7 Alpha Increased transmissibility by introducing a transcription reg-
ulatory sequence upstream of ORF9b 100

13 S T23018G F486V 8.3±0.5 RBM BA.4, BA.5 Increased ACE2 binding and resistance to nAbs 101,102

14 S T22882A N440K 7.8±0.8 RBM BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Increased resistance to nAbs 86,97

15 S T22917G L452R 7.5±0.7 RBM Delta, Kappa, Epsilon, BA.4, BA.5 Increased RBD expression (stability) 92, increased resistance
to nAbs 93, and increased cell entry 94

16 N ∆28364-66 E31- 7.3±0.6 BA.1, BA.2, BA.4, BA.5, BA.2.12.1
17 S A23063T N501Y 7.2±1.5 RBM Alpha, Beta, Gamma, Mu, BA.1, BA.2, BA.4,

BA.5, BA.2.12.1
Increased infection, transmission, ACE2 binding, and resis-
tance to nAbs 86

18 N ∆28367-69 R32- 7.2±0.3 BA.1, BA.2, BA.4, BA.5, BA.2.12.1
19 S C23673T S704L 6.9±0.4 FCS BA.2.12.1
20 M T26767C I82T 6.8±0.7 Delta, Eta
21 S C21618T T19I 6.5±1.2 NTD BA.2, BA.4, BA.5, BA.2.12.1 *Increased resistance to NTD-specific nAbs 103,104

22 NSP6 T11296G F108L 6.5±1.4 *Increased transmission by interferon antagonism 87

23 S G21987A G142D 6.4±1.0 NTD BA.2, BA.4, BA.5, BA.2.12.1 Increased resistance to NTD-specific nAbs 86,88

24 S A24424T Q954H 6.3±1.0 HR1 BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Increased infectivity in vitro 105

25 S C22674T S371F 6.1±0.8 RBD BA.2, BA.4, BA.5, BA.2.12.1 Increased resistance to nAbs 94,97

26 S C22995A T478K 6±0.8 RBM Delta, BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Increased ACE2 binding 86 and resistance to nAbs 93

27 S C23854A N764K 6±1.3 BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Improved structural stability 106,107

28 S T24469A N969K 5.8±1.0 HR1 BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Improved structural stability 86

29 S C23525T H655Y 5.7±0.6 FCS Gamma, BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Increased viral replication, spike protein cleavage, and trans-
mission in vivo 108

30 S C22686T S375F 5.3±0.8 RBD BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Increased resistance to nAbs 86

31 N C28311T P13L 5.2±0.5 Lambda, BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Escape from a HLA-B*27:05 CD8+ T cell epitope 109

32 S C21618G T19R 5.2±0.7 NTD Delta *Increased resistance to NTD-specific nAbs 103,104

33 S G24368T D936Y 5.2±1.2
34 S G22578A G339D 5.1±0.5 RBD BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Increased resistance to nAbs 86

35 S G23012A E484K 5±0.8 RBM Beta, Gamma, Eta, Iota, Mu Increased ACE2 binding 110 and resistance to nAbs 93

36 S G23948T D796Y 5±0.7 BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Improved structural stability 86

37 S T23599A N679K 4.9±0.8 FCS BA.1, BA.2, BA.4, BA.5, BA.2.12.1 *Increased proteolytic activation 86

38 NSP5 C10449A P132H 4.8±1.2 BA.1, BA.2, BA.4, BA.5, BA.2.12.1
39 M G26529A D3N 4.8±0.4 BA.5
40 NSP6 T11288A S106T 4.7±0.9 *Increased transmission by interferon antagonism 87

41 N G28881A R203K 4.7±1.5 Alpha, Gamma, Lambda, BA.1, BA.2, BA.4, BA.5,
BA.2.12.1

Enhanced replication, RNA delivery and packaging 96

42 ORF8 ∆28251-53 F120- 4.4±0.5 Delta
43 S T22200G V213G 4.4±0.9 NTD BA.2, BA.4, BA.5, BA.2.12.1 *Increased resistance to NTD-specific nAbs 86

44 NSP12 G14030A R197Q 4.3±0.3
45 ORF3a C26060T T223I 4.2±0.4 BA.2, BA.4, BA.5, BA.2.12.1
46 S C21762T A67V 4.2±1.6 NTD Eta, BA.1 Increased resistance to NTD-specific nAbs 86

47 E C26270T T9I 4±0.8 BA.1, BA.2, BA.4, BA.5, BA.2.12.1
48 S ∆21635-37 P25- 4±1.1 NTD BA.2, BA.4, BA.5, BA.2.12.1
49 S C22227T A222V 3.8±0.4 NTD 20E (EU1) *Slightly increased cell entry 111

50 S T22679C S373P 3.7±0.7 RBD BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Increased resistance to nAbs 112

Table 1. Table of most highly selected amino acid substitutions across the SARS-CoV-2 genome. Error bars were found by taking random sub-samples of 80% of the original
regions and re-estimating the selection coefficients. Error bars are the standard deviation of the inferred coefficient for each site over 100 replicates. * represents the cases
where phenotypic effect of an amino acid variant has not been reported explicitly in the literature. Instead, it is either based on the function of the encompassing gene, for a
mutation to a different amino acid or deletion at the same position. # all three mutations appear together; RBM = receptor binding motif; RBD = receptor binding domain;
NTD= N-terminal domain; FCS = S1/S2 furin cleavage site; HR1 = heptad repeat 1; nAbs = neutralizing antibodies.
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Variant Pango Lineage Selection (%) Mutations

B.1 B.1 7.7±1.5 ORF1b:P314L, S:D614G
20E(EU1) B.1.177 14.5±2.4 S:A222V,ORF10:V30L,N:A220V
Epsilon B.1.427/429 19.8±2.4 S:S13I, S:W152C, S:L452R, S:D614G, NSP9:I65V, NSP13:D260Y
Lambda C.37 34.4±2.9 S:G75V, S:T76I, S:R246-, S:S247-, S:Y248-, S:L249-, S:T250-, S:P251-, S:G252-, S:D253N, S:L452Q,

S:F490S, S:D614G, S:T859N, NSP3:T428I, NSP3:P1469S, NSP3:F1569V, NSP4:L438P, NSP4:T492I, NSP5:G15S,
NSP6:S106-, NSP6:G107-, NSP6:F108-, NSP12:P323L, N:P13L, N:R203K, N:G204R, N:G214C

Alpha B.1.1.7 38.3±3.0 S:H69-, S:V70-, S:Y144-, S:N501Y, S:A570D, S:D614G, S:P681H, S:T716I, S:S982A, S:D1118H, NSP3:T183I,
NSP3:A890D, NSP3:I1412T, NSP6:S106-, NSP6:G107-, NSP6:F108-, N:D3L, N:R203K, N:G204R, N:S235F,
NSP12:P323L, ORF8:Q27*, ORF8:R52I, ORF8:Y73C

Beta B.1.351 38.4±3.0 S:D80A, S:D215G, S:L241-, S:L242-, S:A243-, S:K417N, S:E484K, S:N501Y, S:D614G, S:A701V, ORF3a:Q57H,
NSP2:T85I, NSP3:K837N, NSP5:K90R, NSP6:S106-, NSP6:G107-, NSP6:F108-, N:T205I, NSP12:P323L, E:P71L

Eta B.1.525 40.7±3.6 S:Q52R, S:A67V, S:H69-, S:V70-, S:Y144-, S:E484K, S:D614G, S:Q677H, S:F888L, NSP12:P323F, N:S2-, N:D3Y,
N:A12G, N:T205I, M:I82T, NSP3:T1189I, NSP6:S106-, NSP6:G107-, NSP6:F108-, E:L21F, ORF6:F2-

Kappa B.1.617.1 43.1±5.7 S:E154K, S:L452R, S:E484Q, S:D614G, S:P681R, S:Q1071H, NSP12:P323L, NSP13:G206C, NSP13:M429I,
NSP15:K259R, NSP15:S261A, N:R203M, N:D377Y, M:I82S, ORF3a:S26L, NSP3:T749I, NSP6:T77A,
ORF7a:V82A

Iota B.1.526 45.3±4.9 S:Q52R, S:A67V, S:H69-, S:V70-, S:Y144-, S:E484K, S:D614G, S:Q677H, S:F888L, NSP12:P323F, N:S2-, N:D3Y,
N:A12G, N:T205I, M:I82T, NSP3:T1189I, NSP6:S106-, NSP6:G107-, NSP6:F108-, E:L21F, ORF6:F2-

Gamma P.1 47.0±3.4 S:L18F, S:T20N, S:P26S, S:D138Y, S:R190S, S:K417T, S:E484K, S:N501Y, S:D614G, S:H655Y, S:T1027I,
S:V1176F, ORF3a:S253P, NSP3:S370L, NSP3:K977Q, NSP6:S106-, NSP6:G107-, NSP6:F108-, N:P80R, N:R203K,
N:G204R, NSP12:P323L, NSP13:E341D, ORF8:E92K

Mu B.1.621 53.2±3.6 S:T95I, S:Y144S, S:Y145N, S:R346K, S:E484K, S:N501Y, S:D614G, S:P681H, S:D950N, NSP3:T237A,
NSP3:T720I, NSP4:T492I, NSP6:Q160R, NSP12:P323L, NSP13:P419S, N:T205I, ORF3a:Q57H, ORF3a:V256I,
ORF3a:N257Q, ORF3a:P258*, ORF8:T11K, ORF8:P38S, ORF8:S67F

Delta B.1.617.2 92.6±5.6 S:T19R, S:E156-, S:F157-, S:R158G, S:L452R, S:T478K, S:D614G, S:P681R, S:D950N, NSP12:P323L,
NSP12:G671S, NSP13:P77L, M:I82T, N:D63G, N:R203M, N:D377Y, ORF3a:S26L, ORF7a:V82A, ORF7a:T120I,
ORF8:D119-, ORF8:F120-, ORF9b:T60A

Omicron BA.1 197.2±8.5 S:A67V, S:H69-, S:V70-, S:T95I, S:G142-, S:V143-, S:Y144-, S:Y145D, S:N211-, S:L212I, S:G339D, S:S371L,
S:S373P, S:S375F, S:K417N, S:N440K, S:G446S, S:S477N, S:T478K, S:E484A, S:Q493R, S:G496S, S:Q498R,
S:N501Y, S:Y505H, S:T547K, S:D614G, S:H655Y, S:N679K, S:P681H, S:N764K, S:D796Y, S:N856K, S:Q954H,
S:N969K, S:L981F, N:P13L, N:E31-, N:R32-, N:S33-, N:R203K, N:G204R, NSP3:K38R, NSP3:S1265-,
NSP3:L1266I, NSP3:A1892T, NSP4:T492I, NSP5:P132H, NSP6:L105-, NSP6:S106-, NSP6:G107-, NSP6:I189V,
NSP12:P323L, NSP14:I42V, ORF9b:P10S, ORF9b:E27-, ORF9b:N28-, ORF9b:A29-, E:T9I, M:D3G, M:Q19E,
M:A63T

Omicron BA.2 245.1±12.4 S:T19I, S:L24-, S:P25-, S:P26-, S:A27S, S:G142D, S:V213G, S:G339D, S:S371F, S:S373P, S:S375F, S:T376A,
S:D405N, S:R408S, S:K417N, S:N440K, S:S477N, S:T478K, S:E484A, S:Q493R, S:Q498R, S:N501Y, S:Y505H,
S:D614G, S:H655Y, S:N679K, S:P681H, S:N764K, S:D796Y, S:Q954H, S:N969K, N:P13L, N:E31-, N:R32-, N:S33-
, N:R203K, N:G204R, N:S413R, NSP1:S135R, NSP3:T24I, NSP3:G489S, NSP4:L264F, NSP4:T327I, NSP4:T492I,
NSP5:P132H, NSP6:S106-, NSP6:G107-, NSP6:F108-, NSP12:P323L, NSP13:R392C, NSP14:I42V, NSP15:T112I,
ORF3a:T223I, ORF6:D61L, ORF9b:P10S, ORF9b:E27-, ORF9b:N28-, ORF9b:A29-, E:T9I, M:Q19E, M:A63T

Omicron BA.2.12.1 273.9±15.1 S:T19I, S:L24-, S:P25-, S:P26-, S:A27S, S:G142D, S:V213G, S:G339D, S:S371F, S:S373P, S:S375F, S:T376A,
S:D405N, S:R408S, S:K417N, S:N440K, S:L452Q, S:S477N, S:T478K, S:E484A, S:Q493R, S:Q498R, S:N501Y,
S:Y505H, S:D614G, S:H655Y, S:N679K, S:P681H, S:S704L, S:N764K, S:D796Y, S:Q954H, S:N969K, N:P13L,
N:E31-, N:R32-, N:S33-, N:R203K, N:G204R, N:S413R, NSP1:S135R, NSP3:T24I, NSP3:G489S, NSP4:L264F,
NSP4:T327I, NSP4:L438F, NSP4:T492I, NSP5:P132H, NSP6:S106-, NSP6:G107-, NSP6:F108-, NSP12:P323L,
NSP13:R392C, NSP14:I42V, NSP15:T112I, ORF3a:T223I, ORF6:D61L, ORF9b:P10S, ORF9b:E27-, ORF9b:N28-,
ORF9b:A29-, E:T9I, M:Q19E, M:A63T

Omicron BA.4 279.2±14.3 S:T19I, S:L24-, S:P25-, S:P26-, S:A27S, S:H69-, S:V70-, S:G142D, S:V213G, S:G339D, S:S371F, S:S373P,
S:S375F, S:T376A, S:D405N, S:R408S, S:K417N, S:N440K, S:L452R, S:S477N, S:T478K, S:E484A, S:F486V,
S:Q498R, S:N501Y, S:Y505H, S:D614G, S:H655Y, S:N679K, S:P681H, S:N764K, S:D796Y, S:Q954H, S:N969K,
N:P13L, N:E31-, N:R32-, N:S33-, N:P151S, N:R203K, N:G204R, N:S413R, NSP1:S135R, NSP1:K141-,
NSP1:S142-, NSP1:F143-, NSP3:T24I, NSP3:G489S, NSP4:L264F, NSP4:T327I, NSP4:T492I, NSP5:P132H,
NSP6:S106-, NSP6:G107-, NSP6:F108-, NSP12:P323L, NSP13:R392C, NSP14:I42V, NSP15:T112I, ORF3a:T223I,
ORF6:D61L, ORF7b:L11F, ORF9b:P10S, ORF9b:E27-, ORF9b:N28-, ORF9b:A29-, E:T9I, M:Q19E, M:A63T

Omicron BA.5 283.0±14.1 S:T19I, S:L24-, S:P25-, S:P26-, S:A27S, S:H69-, S:V70-, S:G142D, S:V213G, S:G339D, S:S371F, S:S373P,
S:S375F, S:T376A, S:D405N, S:R408S, S:K417N, S:N440K, S:L452R, S:S477N, S:T478K, S:E484A, S:F486V,
S:Q498R, S:N501Y, S:Y505H, S:D614G, S:H655Y, S:N679K, S:P681H, S:N764K, S:D796Y, S:Q954H, S:N969K,
N:P13L, N:E31-, N:R32-, N:S33-, N:R203K, N:G204R, N:S413R, NSP1:S135R, NSP3:T24I, NSP3:G489S,
NSP4:L264F, NSP4:T327I, NSP4:T492I, NSP5:P132H, NSP6:S106-, NSP6:G107-, NSP6:F108-, NSP12:P323L,
NSP13:R392C, NSP14:I42V, NSP15:T112I, ORF3a:T223I, ORF9b:P10S, ORF9b:E27-, ORF9b:N28-, ORF9b:A29-,
E:T9I, M:D3N, M:Q19E, M:A63T

Table 2. Table of selection coefficients for groups of amino acid mutations. The selection coefficient for a variant is calculated as the sum of the selection coefficients for the
individual mutations that the variant contains.
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Group of linked SNVs Associated lineage(s)/variant(s) Number
of regions

NSP5:P132H, NSP14:I42V, S:G339D, S:S371F, S:S373P, S:S375F, S:K417N, S:N440K,
S:S477N, S:E484A, S:Q493R, S:Q498R, S:Y505H, S:H655Y, S:N679K, S:N764K, S:D796Y,
S:Q954H, S:N969K, S:D1146D, ORF3a:T64T, E:T9I, M:Q19E, M:A63T, ORF6:R20R,
ORF7b:Y18Y, NC:28271, N:P13L

Omicron (BA.1, BA.2, BA.2.12.1, BA.4,
BA.5)

100

NSP6:T77A, NC:210, NSP3:A488S, NSP3:P1228L, NSP3:P1469S, NSP4:D144D, NSP4:V167L,
NSP6:V120V, NSP12:G671S, NSP13:P77L, NSP14:A394V, S:T19R, S:L452R, S:P681R,
S:D950N, ORF3a:S26L, M:I82T, ORF7a:V82A, ORF7a:T120I, ORF7b:L40L, N:D63G,
N:R203M, N:G215C, N:D377Y

Delta 92

NSP6:I189V, NSP3:K38R, NSP3:A889A, NSP3:A1892T, NSP10:V57V, NSP12:N600N, S:A67V,
S:-214mE, S:-214nE, S:-214oE, S:-214pP, S:-214rP, S:-214sE, S:-214tE, S:-214uE, S:S371P,
S:G446S, S:G496S, S:T547K, S:N856K, S:L981F, M:D3G

Omicron (BA.1) 91

NSP6:S104-, NSP3:S1265-, NSP3:L1266-, NSP6:L105-, S:G142-, S:V143-, S:Y144-, S:Y145D,
S:N211-, S:L212I

Omicron (BA.1) 88

NSP5:D48D, NSP1:S135R, NSP3:T24I, NSP3:G489S, NSP3:A534A, NSP4:L264F,
NSP4:V290V, NSP4:T327I, NSP4:L438F, NSP5:R131R, NSP9:I65I, NSP12:L758L,
NSP13:R392C, NSP15:T112I, NSP15:E145E, S:T19I, S:V213G, S:T376A, S:D405N, S:R408S,
ORF3a:T223I, M:F112F, ORF6:D61L, N:S413R

Omicron (BA.2, BA.2.12.1, BA.4, BA.5) 83

N:G30-, N:E31-, N:R32-, N:S33- Omicron (BA.1, BA.2, BA.2.12.1, BA.4,
BA.5)

83

S:E156-, S:F157-, S:R158G, ORF8:D119-, ORF8:F120- Delta 81
S:L24-, S:P25-, S:P26-, S:A27S Omicron (BA.2, BA.2.12.1, BA.4, BA.5) 57
NSP12:P412P, NSP2:S36S, NSP3:T183I, NSP3:A890D, NSP3:F1089F, NSP3:I1412T,
NSP12:H613H, NSP12:T912T, S:A570D, S:T716I, S:S982A, S:D1118H, ORF8:Q27*,
ORF8:R52I, ORF8:Y73C, N:D3L, N:S235F

Alpha 44

NSP9:Y31Y, NSP1:D156D, NSP3:D10D, NSP3:S370L, NSP3:K977Q, NSP3:P1200P,
NSP3:V1298V, NSP12:D140D, S:T20N, S:P26S, S:D138Y, S:R190S, S:K417T, S:T1027I,
S:V1176F, ORF3a:S253P, ORF8:E92K, N:P80R, NSP13:E341D

Gamma 36

NSP6:Y234Y, NSP12:D523D, S:D53D, S:L452Q, S:S704L Omicron (BA.2.12.1) 30
S:I68-, S:H69-, S:V70-, S:V143-, S:Y144- Alpha, Eta, Omicron (BA.1, BA.4, BA.5) 24
NSP6:G107-, NSP6:F108- Alpha, Beta, Gamma, Eta, Iota, Lambda,

Omicron (BA.2, BA.2.12.1, BA.4, BA.5)
9

NSP6:S106-, NSP6:G107- Alpha, Beta, Gamma, Eta, Iota, Lambda,
Omicron (BA.1, BA.2, BA.2.12.1, BA.4,
BA.5)

8

NSP10:S11S, NSP3:T237A, NSP3:T720I, NSP3:S1106S, NSP13:P419S, NSP14:I332I, S:Y144S,
S:Y145N, NC:26492, ORF8:T11K, ORF8:P38S

Mu 7

S:N501Y, S:P681H, N:R203K, N:G204R Alpha, Omicron (BA.1, BA.2,
BA.2.12.1, BA.4, BA.5)

6

NSP12:P323L, NC:241, NSP3:F106F, S:D614G B.1 4
S:C166S 2
S:D80A, NSP3:K837N, S:D215G, S:T240-, S:L241-, S:L242-, S:A243-, E:P71L Beta 2
NSP15:V320M, NSP3:I414I, NSP4:T173I, S:A575A, S:T1238T, ORF7b:P44-, NC:27888,
NC:27889, NC:27891, NC:27892, NC:27893, ORF8:M1-, ORF8:K2-, ORF8:F3-, N:A208-,
N:R209-, NSP3:E378V

B.1.1.318 2

NSP5:L89F, NSP14:N129D, NSP16:R216C, ORF3a:G172V, ORF8:S24L, N:P67S B.1.2 2
S:G142D Omicron (BA.2) 2
NSP6:V149A, NSP3:P822L, NSP4:A446V, NSP6:T181I, NSP3:T955T, NSP9:L112L AY.9 2
NSP7:C32C, NSP2:H532Q, NSP12:G345G, NSP13:V34V, M:A81S, N:S412R AY.27 2
NSP12:L308L, NSP3:P192L, S:D253A, S:D979E, ORF3a:C130C, M:P123P, ORF7b:L41L 1
NC:28271 Delta 1
NSP10:M137K, NSP3:R1868P, NSP4:S358Y, NSP10:L138R, NSP14:P128P AY.4.5 1
NSP12:F694Y AY.4 1
NSP2:R370C, NSP2:E575K, ORF3a:Y109C B.1.279 1
NSP4:T492I, S:T478K Delta, Omicron (BA.1, BA.2, BA.2.12.1,

BA.4, BA.5)
1

NSP9:M101I, NSP3:I1683T, NSP12:V720I, NSP13:A598S, S:T1116T, M:R150R, ORF7b:*15*,
NSP13:H290Y, NSP3:Y1776Y, S:N439K

B.1.258.22 1

NSP8:N43H, NSP3:P1403S, S:M1237T L.1 1
NSP12:D481A, S:D1259Y AY.4.5 1
NSP2:M117V, NSP3:V1811V, NSP8:P10P, ORF3a:L95F, NC:28272, N:D401Y B.1.438.1 1
NSP16:A199A, NSP1:V60V, NSP3:T1189T, M:L93L, N:A220V, ORF10:V30L EU1 1
S:G75V, NSP3:F1569V, S:T76I, S:P251-, N:G214C, S:R246-, S:S247-, S:Y248-, S:L249-,
S:T250-, S:G252-, S:D253N

Lambda 1

ORF3a:D265D, N:D216D (synonymous) 1

Table 3. Table of groups of linked SNVs that are detected as increasing transmission. Their associated variants and the number of times these groups are detected is also
listed.
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Supplementary Information

1. Summary
Here we discuss two main topics. First, we give a detailed introduction of our epidemiological model as well as a derivation of
the estimator (1) and an important simplification of it. Second, we describe simulations of an outbreak and show that selection
coefficients can be accurately recovered from simulation data even with relatively poor sampling.

2. Epidemiological model

2.1. Introduction
In epidemiology, the spread of infection can be modeled as a branching process where each infected individual (also referred to
as a case) infects n additional individuals113. The distribution of n is often taken to be Poisson, but differences in the number
of contacts with susceptible individuals, disease course within an individual, and other factors mean that the Poisson rate λ is
not generally the same for all cases114. Below, we first follow ref.114 to explore families of distributions for the number of new
cases per infected individual. Next, we extend these models to consider multiple variants of the pathogen that differ in their
spreading efficiency. We seek to characterize how the distribution of pathogen variant frequencies is expected to change over
time, and how such data can be used to estimate the relative spreading efficiency of different variants.

2.2. Distributions for the number of infected individuals
As noted above, the basic distribution of the number of new cases n caused by one case in a susceptible population is Poisson,

PP(n|λ) = λne−λ

n! .

Typically we might take the Poisson rate λ to be R, the effective reproduction number, which is the expected number of cases
directly caused by one case. In that case, the average number of cases following the Poisson distribution is

〈n〉PP(n|R) =
∞∑
n=0

nPP(n|R) =R.

To account for variability in transmission dynamics, the basic Poisson distribution with a single rate R can be replaced with a
continuous mixture of Poisson distributions, where the rate parameter λ follows a gamma distribution,

PΓ(λ|α,β) = βα

Γ(α)λ
α−1e−βλ ,

with shape parameter α and rate parameter β. The average value of λ is

〈λ〉PΓ(λ|α,β) = α

β
,

and its variance is 〈(
λ− α

β

)2
〉
PΓ(λ|α,β)

= α

β2 .

In this context, it is natural to take α= k and β = k/R. With these choices, the gamma distribution reads

PΓ(λ|k,R) = 1
Γ(k)

(
k

R

)k
λk−1e−kλ/R . (S1)

The parameter k is a dispersion parameter that determines how long-tailed the distribution is. The mean value of λ is always R,
but when k is smaller its variance increases. In the limit that k→∞, we recover the pure Poisson distribution with rate λ=R.
When k = 1, the distribution of the number of cases n is geometric,∫ ∞

0
dλ PΓ(λ|k = 1,R)PP(n|λ) = Pg(n|p) = (1−p)n p,

where p= 1/(1 +R). For arbitrary values of k > 0, the number of cases follows a negative binomial distribution,

PNB(n|k,R) = Γ(k+n)
n!Γ(k)

(
k

k+R

)k(
R

k+R

)n
.

The standard parameters of the negative binomial distribution are r and p, which are set to k and k/(k+R) in our parameteri-
zation above.
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2.3. Dynamics for variant frequencies
Let us assume that there exist multiple variants of a pathogen, which are distinguished by an index a. The number of cases
infected with variant a is na. We assume that different variants have slightly different transmission probabilities, so that
Ra =R(1 +wa), with |wa| � 1. The term wa is analogous to a selection coefficient in population genetics.

2.3.1. Dynamics of multiple cases infected by a single variant

First, let us assume that n individuals, each labeled by an index i, are all infected by the same variant of a pathogen. How many
cases will be generated from these individuals? The number of new cases for all individuals is

n′ =
n∑
i=1

n′i ,

where the numbers of cases n′i generated by individual i follows a negative binomial distribution. Because all individuals are
infected by the same variant, the negative binomial parameter p= k/(k+R) is the same for each of them. Then, assuming that
all of the infection events are independent, it can be shown that the probability distribution for the total number of new cases n′

also follows a negative binomial distribution with the same value of p, and with r = nk (that is, the new r parameter value is
the sum of the individual r parameter values). Thus, the distribution of n′ is

PNB+(n′|k,R,n) = Γ(nk+n′)
n′!Γ(nk)

(
k

k+R

)nk(
R

k+R

)n′

.

2.3.2. Dynamics for multiple cases infected by multiple variants

Let us extend the previous example to consider m variants of a pathogen. At the starting point, the number of individuals
infected by a given variant a is na, with a ∈ {1, . . . ,m}. The fraction of cases infected by variant a is

ya = na∑m
b=1nb

.

Now, we would like to know how the fraction of individuals infected by each variant is expected to change with each round of
infections. In other words, for variant a, we would like to compute

〈
y′a
〉

=
〈

n′a∑m
b=1n

′
b

〉
=
∑
n′

(
m∏
b=1

PNB+(n′b|k,R(1 +wb),nb)
)

n′a∑m
c=1n

′
c

where the outer sum is over all vectors n′ with entries {n′1,n′2, . . .}, and with n′b ≥ 0 for all b. Here, we have assumed that the
n′b’s are independent across b.

To proceed, it is convenient to write the negative binomial distributions as mixtures of Poisson distributions (as indicated
above), giving

〈
y′a
〉

=
∑
n′

(
m∏
b=1

∫ ∞
0
dλb PΓ (λb|nbk,R(1 +wb)) PP(n′b|λb)

)
n′a∑m
c=1n

′
c

=
(

m∏
b=1

∫ ∞
0
dλb PΓ (λb|nbk,R(1 +wb))

)∑
n′

(
m∏
b=1

PP(n′b|λb)
)

n′a∑m
c=1n

′
c

.

Next, we use the fact that the sum of independent Poisson-distributed random variables is also Poisson with rate parameter
equal to the sum of the individual rates, and that the distribution of independent Poisson random variables conditioned on their
sum is multinomial, to write

〈
y′a
〉

=
(

m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R(1 +wb))
) ∞∑
n′=0

PP
(
n′|λ

) ∑
n′:
∑m

c=1n
′
c=n′

PM

(
n′
∣∣∣n′, λ

λ

)
n′a
n′

=
(

m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R(1 +wb))
) ∞∑
n′=0

PP
(
n′|λ

) λa
λ

=
(

m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R(1 +wb))
)
λa
λ
.
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Here λ is a vector with entries {λ1,λ2, . . .}, and we have also introduced
∑
aλa = λ. Note also that the outer sum on the first

line is over all vectors n′ whose (non-negative) entries sum to n′.
Computing the remaining integrals exactly is challenging, largely because the Gamma distributions have different rate pa-

rameters. To address this, next we will expand our expression to first order in the wa, since these are assumed to be small
parameters. Referring back to Eq. (S1), the expansion gives〈

y′a
〉

=
(

m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R)
[
1−kwb

(
nb−

λb
R

)])
λa
λ

+O
(
w2)

=
(

m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R)
)[

1−
m∑
c=1

kwc

(
nc−

λc
R

)]
λa
λ

+O
(
w2) .

Next we change variables to {λ,q1 = λ1/λ,q2 = λ2/λ, . . . , qm−1 = λm−1/λ}, because the distribution of the sum of gamma-
distributed random variables, λ, with the same rate parameter and the ratios of the individual variables to the total (λa/λ) follow
independent gamma and Dirichlet distributions115. The mth ratio qm = 1−

∑m−1
a=1 qa by conservation. By convention we will

also set wm = 0, which can be thought of as normalizing the value of R relative to a reference genotype. The transformation
then gives 〈

y′a
〉

=
∫ ∞

0
dλ PΓ (λ|nk,R)

(
m−1∏
b=1

∫
dqb

)
PD (q|nk)

[
1−

m∑
c=1

kwc

(
nc−

λqc
R

)]
qa

=
(
m−1∏
b=1

∫
dqb

)
PD (q|nk)

[
1−

m∑
c=1

kwc (nc−nqc)
]
qa

=
(

1−k
m∑
c=1

ncwc

)
ya+

(
m−1∏
b=1

∫
dqb

)
PD (q|nk)nk

∑
c 6=a

wcqcqa+waq
2
a


=
(

1−nk
m∑
b=1

wbyb

)
ya+ nk

nk+ 1

nk∑
b 6=a

wbyayb+wa
(
nky2

a+ya
)

= ya+ nk

nk+ 1ya

(
wa−

m∑
b=1

wbyb

)
.

In the expressions above PD(q|α) is the Dirichlet distribution, with concentration parameters α given by nk in our case. Note
that if wm 6= 0, the last line should instead read〈

y′a
〉

= ya+ nk

nk+ 1ya

(
wa−wm−

m∑
b=1

wbyb

)
.

Thus, we obtain (with wm = 0) 〈
y′a−ya

〉
= 〈∆ya〉= nk

nk+ 1ya

(
wa−

m∑
b=1

wbyb

)
.

Following a similar approach, we can compute the second moments. First, we consider〈(
y′a
)2〉=

〈(
n′a∑m
b=1n

′
b

)2
〉

=
(

m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R(1 +wb))
) ∞∑
n′=0

PP
(
n′|λ

) ∑
n′:
∑m

c=1n
′
c=n′

PM

(
n′
∣∣∣n′, λ

λ

)(
n′a
n′

)2

=
(

m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R(1 +wb))
) ∞∑
n′=0

PP
(
n′|λ

)[(λa
λ

)2
+ 1
n′
λa
λ

(
1− λa

λ

)]

≈

(
m∏
b=1

∫ ∞
0

dλb PΓ (λb|nbk,R)
)[

1−
m∑
c=1

kwc

(
nc−

λc
R

)][(
λa
λ

)2
+ 1
λ

λa
λ

(
1− λa

λ

)]

=
∫ ∞

0
dλ PΓ (λ|nk,R)

(
m−1∏
b=1

∫
dqb

)
PD (q|nk)

[
1−

m∑
c=1

kwc

(
nc−

λqc
R

)][
q2
a+ qa(1− qa)

λ

]
.
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In going from the third to the fourth line above, we have made the approximation that〈
1
n′

〉
PP(n′|λ)

≈ 1
λ
,

which is valid for λ& 1. Similarly,

〈
y′ay
′
b

〉
=
〈

n′an
′
b(∑m

c=1n
′
c

)2
〉

=
∫ ∞

0

(
m∏
c=1

dλc PΓ (λc|nck,R(1 +wc))
) ∞∑
n′=0

PP
(
n′|λ

)(
1− 1

n′

)
λaλb
λ2

≈
∫ ∞

0

(
m∏
c=1

dλc PΓ (λc|nck,R)
)[

1−
m∑
d=1

kwd

(
nd−

λd
R

)](
1− 1

λ

)
λaλb
λ2

=
∫ ∞

0
dλ PΓ (λ|nk,R)

(
m−1∏
c=1

∫
dqc

)
PD (q|nk)

[
1−

m∑
d=1

kwd

(
nd−

λqd
R

)](
1− 1

λ

)
qaqb .

Simplifying the expressions above is tedious but straightforward. The following results are helpful:∫ ∞
0
dλ PΓ (λ|nk,R)λ= nR,∫ ∞

0
dλ PΓ (λ|nk,R) 1

λ
= k/R

nk−1 ,(
m−1∏
c=1

∫
dqc

)
PD (q|nk)qaqb = nk

nk+ 1yayb ,(
m−1∏
b=1

∫
dqb

)
PD (q|nk)q2

a = y2
a+ ya(1−ya)

nk+ 1 = nk

nk+ 1y
2
a+ 1

nk+ 1ya ,(
m−1∏
c=1

∫
dqc

)
PD (q|nk)q2

aqb =
(
y2
a+ ya(1−ya)

nk+ 1

)
nk

nk+ 2yb ,(
m−1∏
b=1

∫
dqb

)
PD (q|nk)q3

a =
(
y2
a+ ya(1−ya)

nk+ 1

)
nkya+ 2
nk+ 2 .

Here we have frequently used na = nya to simplify expressions.
With the above results, simplifying expressions for the second moments, we finally find〈

(∆ya)2
〉

=
[

1
nk+ 1 + nk

nk+ 1
k/R

nk−1

]
ya (1−ya) +O

(
1/n2) ,

and

〈∆ya∆yb〉=−
[

1
nk+ 1 + nk

nk+ 1
k/R

nk−1

]
yayb+O

(
1/n2) ,

where we have assumed that the wa are O (1/n), as in the Wright-Fisher model with weak selection. We have thus found
that the first and second moments of frequency changes in our multi-variant epidemiological model have the same frequency
dependence as those in the multispecies Wright-Fisher model, but with different scaling. The first moment (‘drift’) is multiplied
by a factor of nk/(nk+ 1), and the second moment (‘diffusion’) by

1
nk+ 1 + nk

nk+ 1
k/R

nk−1 .

These prefactors match with the Wright-Fisher model exactly when k→∞ (i.e., a pure Poisson distribution for the number of
new cases per infected individual) and R= 1.
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2.4. Derivation of the selection coefficient estimator

The derivation in this section closely follows that given in ref.116. It is well known that a WF process can be approximated by
a continuous-time continuous-frequency diffusion process in the large n limit. In the continuous-time limit the time variable t
has units of n generations, with one generation in discrete time taking τ = 1/n continuous time units. The selection coefficients
wa are assumed to scale with n such that wa = w̃a/n, where w̃a is a parameter independent of the population size n. In the
limit of large population size, our generalized super-spreading model can, like the WF process, be approximated by a diffusion
process, where the transition probability density φ is the solution to the Fokker-Planck equation

∂φ

∂t
=
[
−

M∑
a=1

∂

∂xa
d(y(t)) +

M∑
a=1

M∑
b=1

∂

∂ya

∂

∂yb
Cab(y(t))

]
φ,

where M is the number of distinct genotypes, y is the genotype frequency vector, d is the drift vector, and C is the diffusion
matrix. Here we ignore recombination and mutation, since these are comparatively small and therefore unlikely to significantly
affect estimates of changes in viral transmission (though these can be included and the solution remains tractable). The drift
and diffusion have entries given by,

d̃a(y(t)) = lim
n→∞

n〈∆ya〉

= lim
n→∞

nk

nk+ 1ya(t)
(
wa−

M∑
b=1

wbyb(t)
)

= ya(t)
(
w̃a−

M∑
b=1

w̃byb(t)
)
,

C̃ab(y(t)) = 1
2 lim
n→∞

n〈∆ya∆yb〉

= 1
2

[
1
k

+ 1
R

]{
ya(t)(1−ya(t)) a= b

−ya(t)yb(t) a 6= b .

For genotype frequencies observed at times t and t+ τ∆t (i.e., over ∆t generations), and for small τ∆t, the Fokker-Planck
equation can be converted into a path integral approximation for the transition probability density (see ref.116 for a rigorous
derivation)

φ(y(t+ τ∆t)|y(t))

≈
exp

{
− 4n

∆t
∑M
a=1

∑M
b=1

[
ya(t+ τ∆t)−ya(t)− d̃a(y(t))τ∆t

](
C̃−1(ya(t)

)
ab

[
yb(t+ τ∆t)−yb(t)− d̃b(y(t))τ∆t

]}
(4πτ∆t)M/2

√
det
(
C̃(y(t))

) .

From this result, and recalling τ = 1/n, the transition probability from time tm to tm+1 of the original branching process (for
large n/∆t) can be approximated by

P (y(tm+1)|y(tm))

≈ φ(y(tm+1)|y(tm))
M∏
a=1

dya(tm+1)

=
exp

{
−n2

∑M
a=1

∑M
b=1

[
ya(tm+1)−ya(tm)

∆tm −da(y(tm))
](
C−1(ya(tm)

)
ab

[
yb(tm+1)−yb(tm)

∆tm −db(y(tm))
]}

(2π∆tm/n)M/2
√

det(C(y(tm)))

M∏
a=1

dya(tm+1) ,

where we write the re-scaled drift vector as da = d̃aτ , the re-scaled diffusion matrix as Cab = 2C̃ab, and ∆tm = tm+1− tm.
Since we aim to infer selection coefficients for the SNVs, it is more convenient to work with the allele frequencies xi instead
of the genotype frequencies ya. The allele frequency at site i is given by

xi(tm) =
M∑
a=1

gai ya(tm) ,
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where gai is a 1 if there there is a mutant allele at site i on genome a and zero if there is not. Similarly, if the selection coefficient
for the genotype a is wa and the allele level selection coefficient for allele j is sj , then they are related by:

wa =
L∑
j=1

gaj sj ,

where L is the length of the genome.
The allele level drift and diffusion terms will be linear combinations of the genotype level drift and diffusion, just as with the

frequencies and the selection coefficients. The drift vector for the allele frequencies can be transformed by

di (x(tm)) =
M∑
a=1

gai da (y(tm))

=
M∑
a=1

gai ya(tm)
(
wa−

M∑
b=1

wbyb(tm)
)

= xi(tm)(1−xi(tm))si+
L∑

j=1,j 6=i
(xij(tm)−xi(tm)xj(tm))sj .

This can be used, along with the transition probability density for genomes, in order to find an approximation for the mutant
allele transition probability density:

P (x(tm+1)|x(tm))

≈
exp

{
−n2

∑L
i=1
∑L
j=1

[
xi(tm+1)−xi(tm)

∆tm −di(x(tm))
](
C−1(x(tm)

)
ij

[
xj(tm+1)−xj(tm)

∆tm −dj(x(tm))
]}

(2π∆tm/n)L/2
√

det(C(x(tm)))

L∏
i=1

dxi(tm+1) ,

where here the diffusion C is derived similarly to the drift d and has entries

Cij(x(tm)) =
[

1
k

+ 1
R

]
(xij(tm)−xi(tm)xj(tm)) .

A path integral then gives the probability of observing a trajectory of allele frequencies (x(t1),x(t2), ...,x(tT−1)), and is given
by

P
(

(x(tm))Tm=1
∣∣x(t0)

)
=
T−1∏
m=0

P (x(tm+1)|x(tm)) .

Bayesian analysis can then be used to show that the posterior probability of the selection coefficients s= (s1,s2, ...,sL) given
an observed frequency path x(t0),x(t1), ...,x(tT−1) is

P
(
s
∣∣(x(tm))Tm=0

)
∝ P

(
(x(tm))Tm=1

∣∣x(t0)
)
×PPrior(s) , (S2)

where we use a Gaussian prior distribution with zero mean and adjustable covariance determined by the parameter γ, which is
the precision.

For the inferred coefficients, we take those that maximize the posterior probability. They can be analytically found by a
simple application of the Euler-Lagrange equations to (S2) and are given by

ŝ=
[
γI+

∑
m

n
k2R2

(R+k)2C(tm)
]−1[∑

m

nkR

k+R
(∆x(tm))

]
. (S3)

2.5. Extension to multiple regions
In the SARS-CoV-2 pandemic, and in real disease outbreaks in general, there are frequently multiple different outbreaks in
different regions that develop largely or entirely independently of one another. In order to find the best estimate for the selection
coefficients using the data from multiple regions, the estimator can be generalized to find the maximum a posteriori estimate
for the selection coefficients given the time series of allele frequencies in each of the regions. If the probability for a specific
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path in a specific region r is given by P
(

(xr(tr,m))Tr
m=1

∣∣xr(tr,0)
)

, where xr is the allele frequency vector in region r, then
the joint probability of the specific paths in all of the regions is simply the product of the individual region probabilities:

P
(

(x1(t1,m))T1
m=1, ...,(xQ(tQ,m))TQ

m=1
∣∣{xr(tr,0)}Qr=1

)
=

Q∏
r=1

P
(

(xr(tr,m))Tr
m=1

∣∣xr(tr,0)
)
,

where Q is the number of different regions. Since this is a product of exponential functions, the log posterior will be the sum
of the exponents and the regularization. This can be maximized with respect to the selection coefficient vector s as before and
leads to the estimator:

ŝ=

γI+
∑
r

∑
tr,m

nrk
2
rR

2
r

(kr +Rr)2Cr(tr,m)

−1∑
r

∑
tr,m

krnrRr
kr +Rr

∆xr(tr,m)

 . (S4)

2.6. Simplification of the estimator
In real outbreaks the parameters k, R, and n are in general time-varying. In our simulations as well, R and n are time-varying
(and k can be constant or time-varying). In order to accurately infer the selection coefficients according to Eq. (S3) or Eq. (S4),
it would seem that we need to accurately infer the values of k, R, andN at every point in the time series. In practice, this would
be extremely difficult. For general discussion about the effective reproduction number R and the basic reproduction number
Rt as well as some attempts to infer this, see refs.117–121. In order to get an accurate estimate for k it is necessary to have
pervasive contact tracing, so that the negative binomial distribution is well sampled, and there are other difficulties in inferring
k as well122–124. Lastly, it can be difficult to estimate the number of new infections due to multiple factors, including the
difference between the population that gets tested and the population that does not, test result inaccuracies, and delays between
symptom onset, testing, and reporting125,126.

We propose an alternative that lets us avoid these complications. The prefactor nkR/(R+k), multiplies both the numerator
and the denominator. Therefore, the only effect of the prefactor is to weight time points more heavily if the population size,
the dispersion parameter, or the basic reproduction number, is larger. This makes sense in theory, because a larger n or k
implies that there is less noise and the trajectories are more deterministic, while a larger R means that there are more new
infections per generation and thus more data to use to infer the selection coefficients. This does hold with perfect information,
that is, if all infected individuals are sampled at every time point. However, in practice, finite sampling is the source of
significantly more noise than that due to a time-varying population size or dispersion, so weighting the time points based
upon n, k, or R in fact leads to worse inference than assuming the parameters are constant in time and thus weighting the
time points equally. However, in the special and unrealistic case of perfect sampling, using the actual parameters does lead to
better inference than using constant parameters (see Supplementary Fig. 10). If the time points are weighted equally, then,
provided that the regularization γ is scaled appropriately (and in general it must be determined by separate means, discussed
below), the prefactors in the numerator and denominator cancel, and the estimator is independent of n, k, and R. Defining
γ′ = γnkR/(k+R) and C̄ by

C =
[
nkR

k+R

]
C̄ ,

so that

C̄ij =
{
xij(tm)−xi(tm)xj(tm) i 6= j

xi(tm)(1−xi(tm)) i= j
,

Eqs. (S3) and (S4) for the selection coefficients become, respectively

ŝ =
[
γ′I+

∑
tm

C̄(tm)
]−1[∑

tm

∆x(tm)
]
,

ŝ =

γ′I+
∑
r

∑
tr,m

C̄r(tr,m)

−1∑
r

∑
tr,m

∆xr(tr,m)

 ,
which are the same as the MPL estimators for the Wright-Fisher model except for the absence of a mutation term116.

2.7. Covariance of the inferred selection coefficients
Since the posterior given in (S2) is a Gaussian distribution for the selection coefficients, the covariance matrix of the inferred
selection coefficients can be easily found. For any Gaussian distributed random vector z, the inverse of the covariance can be
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calculated as the second derivative with respect to z of the negative log of the probability density function. That is, if we define

J =− ln
[
P
(
s
∣∣(x(tm))Tm=0

)]
= 1

2

[
γs2 +

T−1∑
m=0

n [x(tm+1)−x(tm)−d(x(tm))]T C−1(x(tm)) [x(tm+1)−x(tm)−d(x(tm))]

+
T−1∑
m=0

(
L ln

(
2π
n

)
+ ln(detC)

)]
,

then the inverse of the covariance matrix of the parameters is given by the second derivative of J with respect to s. The first
derivative of J with respect to s gives

∂J

∂s
= γs−

T−1∑
m=0

nkR

k+R
CC−1 [x(tm+1)−x(tm)−d(x(tm))] .

The second derivative, which is the inverse of the covariance of the selection coefficients s, is

∂2J

∂s∂sT
= γ+

T−1∑
m=0

nk2R2

(k+R)2C(x(tm)) .

This implies that the covariance of the inferred coefficients is given by

Σ =
[
γI+

T−1∑
m=0

nk2R2

(k+R)2C(x(tm))
]−1

.

Using the definitions of γ′ and C̄ given above, in the case where the parameters n, k, and R are constant, this reduces to

Σ = k+R

nkR

[
γ′I+

T−1∑
m=0

C(x(tm))
]−1

. (S5)

Since (k+R)/nkR is a decreasing function of k, this implies that the theoretical covariance decreases as the dispersion k
becomes larger.

2.8. Covariance of inferred selection coefficients for a group of fully linked sites
The above analysis can be used to quantify the covariance between inferred coefficients for a group of SNVs that are fully
linked, meaning that all of the SNVs in the group appear together on every sequence on which one of the SNVs appear. This is
useful because it provides an estimate for the maximum covariance between linked SNVs. An analytical result is presented only
for the special case where all of the SNVs under consideration are fully linked, though simulations indicate that the maximum
value is not strongly dependent on other SNVs that are partially linked to the main group. The covariance matrix at any time
for a group of fully linked SNVs has (i, j)th element given by (C(tm))ij =

[ 1
k + 1

R

]
xi(tm)(1−xi(tm)) for any (i, j), since

the frequencies xi(tm) for all of the SNVs are identical. This implies that the second term in (S5) is a matrix with every entry
identical. If we define the elements of the matrix

T−1∑
m=0

nk2R2

(k+R)2Cij(x(tm))≡ α,

the vector u as the vector of all 1’s, and use the notation (·)T to denote transpose, then the covariance of the inferred coefficients
can be written as

Σlinked =
[
γI+αuuT

]−1
.

Because of the simplicity of this form of the matrix, the inversion can be carried out explicitly using the Sherman-Morrison
formula, which for an n×n matrix gives

Σlinked = 1
γ
I−

α 1
γ2 Iuu

TI

1 +αuTIu 1
γ

= 1
γ
I− 1

γ2
α +γn

uuT .
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From this the correlation matrix can be easily calculated, and the off-diagonal elements represent the maximum correlation
between n SNVs that are fully linked to one another. The off diagonal elements of the correlation matrix are given by

ρi,j = 1
1−n− γ

α

.

We analyzed sets of strongly linked mutations in the Alpha, Delta, and Omicron variants to test our ability to distinguish the
independent selective effects of individual mutations. Supplementary Figure 14 shows that, while many inferred selection
coefficients are naturally correlated, this correlation is far from complete. Only in rare circumstances (e.g., the three nucleotide
mutations comprising N:D3L in Alpha) are SNVs so strongly linked that their effects cannot be at least partially disentangled.

127,128

3. Simulations
We tested the inference using simulations of disease spread. Specifically, we ran super-spreader simulations based on the
model described above, which is an analog of the Wright-Fisher model where the sampling distribution for the number of new
infections per infected individual is drawn from a negative binomial distribution instead of a pure Poisson distribution.

3.1. Description of simulations
We simulated disease spread as a branching process in which the number of individuals infected per currently infected indi-
vidual is drawn from a negative binomial distribution whose shape is determined by the basic reproduction number R0 (or the
reproduction number, R, in a population that is not totally susceptible) and the dispersion parameter k. Because we sample
in this way, the population size is not constant. However, if the population size is too small, then the population is extremely
likely to die off stochastically, and if the population size is too large, then sampling from the negative binomial becomes too
computationally expensive. In order to avoid both of these problems, once the population size is large enough R is adaptively
adjusted so that the average reproduction number for the entire population will remain near 1, and the population size will
oscillate around a fixed value. An explicit time-varying population size can also be used as input, and R will be adaptively
adjusted to remain near the given curve. Constant values can be used for the dispersion k or k can vary as a function of time,
perhaps representing different degrees of social distancing or lockdown measures at different times. Since different interven-
tions implemented to prevent the spread of disease would likely affect the shape of the distribution of the number of individuals
infected by a single infected individual, time-varying values for k and R can be used to reflect these effects.

3.2. Inference
The simulations are run for a number of generations and genomes are sampled from the population of infected individuals at
different times using a multinomial sampling distribution. This sampled time series is then used to infer the selection coefficients
using (S3). Alternatively, multiple simulations can be run and the joint inference of the selection coefficients can be made using
(S4). We find that, given good enough sampling, a long enough time series, and sampling that occurs at a sufficient number
of times, the selection coefficients can be inferred very accurately (Fig. 1). The quality of inference is significantly improved
if multiple simulations are combined and if mutated sites show up in more than one of the simulations, even under less than
ideal sampling conditions. Beneficial coefficients are typically inferred more accurately than deleterious ones, likely because
deleterious SNVs frequently die off and therefore there is less data to use for inference.

The inference is robust to shortening the time-series or lowering the number of samples taken per generation, though obvi-
ously if either of these conditions is too extreme (or worse, both), the inference starts to break down. The negative effects of
a short time-series or poor sampling can be somewhat made up for by using multiple simulations, which is analogous to using
data from outbreaks in multiple regions. In addition, the diffusion approximation is only valid in the large n limit. However,
we tested the inference for small population sizes and found that inference is accurate even if the population of newly infected
individuals per serial interval is as low as a few hundred (Fig. 1).
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