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Deep mutational scanning (DMS) experiments provide a pow-
erful method to measure the functional effects of genetic muta-
tions at massive scales. However, the data generated from these
experiments can be difficult to analyze, with significant varia-
tion between experimental replicates. To overcome this chal-
lenge, we developed popDMS, a computational method based
on population genetics theory, to infer the functional effects of
mutations from DMS data. Through extensive tests, we found
that the functional effects of single mutations and epistasis in-
ferred by popDMS are highly consistent across replicates, com-
paring favorably with existing methods. Our approach is flexi-
ble and can be widely applied to DMS data that includes multi-
ple time points, multiple replicates, and different experimental
conditions.

Understanding the relationship between protein sequence
and phenotype is a central question in evolution and protein
engineering. In recent years, a new family of experimental
methods, commonly referred to as deep mutational scanning
(DMS) or multiplexed assays for variant effects (MAVEs),
have been developed to measure the functional effects of
large numbers of mutations simultaneously1,2. DMS experi-
ments typically work by generating a vast library of protein
variants that are then passed through rounds of selection that
favor functional variants while eliminating inactive ones3.
One can then compare variant frequencies in the pre- and
post-selection libraries to estimate the functional effects of
mutations. This approach has been successfully applied in
a wide variety of contexts, from studying the function of en-
zymes4 and tRNAs5 to measuring the mutational tolerance of
influenza6–8 and human immunodeficiency virus (HIV-1)9–11

surface proteins.
Despite the success of DMS experiments, popular ap-

proaches for analyzing DMS data yield surprisingly modest
correlations between the inferred functional effects of muta-
tions in experimental replicates. Thus, a significant amount
of variance in the data remains unexplained. Some meth-
ods use the ratios between post- and pre-selection variant
frequencies, known as enrichment ratios, to estimate muta-
tion effects12–14. Ratio-based methods may be sensitive to
noise when variant counts are low, a common occurrence in
DMS experiments. Methods based on regression15–19 pro-
vide improved performance, but substantial uncertainty in the
inferred effects of different mutations persists.

We developed a method, popDMS, to estimate the func-
tional effects of mutations in DMS experiments using statis-
tical methods from population genetics (Methods). In our
approach, we view rounds of phenotypic selection in experi-

ments as analogous to rounds of reproduction in natural pop-
ulations. We quantify the effect of each mutation i by a
selection coefficient si, which describes the relative advan-
tage or disadvantage of the mutation for surviving selection
in the experiment. Leveraging recently-developed computa-
tional methods20–22, we can quantify the likelihood of exper-
imentally observed variant frequency changes as a function
of the selection coefficients. We then use Bayesian inference
to identify the selection coefficients that best explain the data.

popDMS has several computational strengths. First, the
use of a prior distribution for the selection coefficients curbs
the inference of strong functional effects in the absence of
strong statistical evidence. Our Bayesian framework further
allows us to derive joint estimates of selection coefficients
across replicates that are guided by levels of evidence in the
data, rather than simply averaging the inferred functional ef-
fects of mutations across replicates. When information about
sequencing error rates is available, we can perform error cor-
rection for variant frequencies. In simulations, we found that
popDMS was robust to sampling noise and provided stronger
correlations between inferred variant effects across replicates
than common methods based on enrichment ratios or regres-
sion (Supplementary Fig. 1).

Next, we analyzed a collection of 25 DMS data sets with
popDMS5,11,15,16,23–31. These data sets were generated and
analyzed using a variety of experimental techniques and ana-
lytical methods (see Supplementary Table 1). Like the func-
tional metrics introduced by previous methods, selection co-
efficients provide an intuitive visualization of the functional
effects of mutations (Fig. 1a). To quantify the consistency
of different analytical methods, we computed the Pearson
correlation R between mutation effects inferred from repli-
cates of the same experiment. We found that mutation effects
inferred by popDMS had higher correlations between repli-
cates than those inferred by prior methods for all the data sets
that we considered (Fig. 1b). Our selection coefficients also
compared favorably with the frequencies of amino acid vari-
ants in influenza viruses in a natural population6 (see Meth-
ods). To illustrate performance in a typical case, we show
selection coefficients inferred for mutations in the HIV-1 en-
velope protein BF520 (Fig. 1c) compared with enrichment
ratios (Fig. 1d) for the same data11. Improvements in consis-
tency across replicates with popDMS were often substantial.
The mean improvement in R2 for variant effects was 0.36,
with 6 out of 25 data sets showing an improvement in R2 of
>0.50 (Fig. 1e).
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Fig. 1. popDMS overview. a, Example of the effects of mutations inferred by popDMS for the Ube4b protein 23. b, Across 25 data sets, popDMS infers more consistent
mutational effects than previous ratio/regression-based methods. To illustrate consistency between replicates, we show (c) selection coefficients inferred across replicates
for the HIV-1 envelop BF520 data set 11, compared with (d) enrichment ratios for the same data. e, popDMS gains in consistency across replicates are often substantial,
improving R2 by an average of 0.36.

We then asked how similar the selection coefficients in-
ferred by popDMS are to mutation effects inferred by pre-
vious methods. Across the experimental data sets that we
tested, popDMS results were broadly consistent with ex-
isting metrics (average Pearson’s R = 0.70). This corre-
lation is similar to the average correlation between repli-
cates of the same data set using current ratio- or regression-
based methods (average Pearson’s R = 0.69). Figure 2a
shows a typical example, comparing selection coefficients
inferred by popDMS with enrichment ratios for the HIV-1
Env BG505 data set31. While the inferred mutation effects
agreed for most sites, some showed qualitative differences
(Supplementary Fig. 2). One factor underlying this result is
that popDMS models variants with high initial frequencies,
such as wild-type or reference amino acids, in the same way
as other, low-frequency variants (see Methods). In alternative

methods, the statistical treatment for wild-type amino acids is
often different than for other variants.

Beyond inferring the effects of individual mutations, we
can apply popDMS to estimate pairwise epistatic interactions
between variants at different sites. We inferred epistatic inter-
actions in an hYAP65 WW domain data set using popDMS,
which we also compared with previous results15. Due to dif-
ferent conventions in defining epistasis, we transformed the
functional measurements defined in ref.15 to more directly
compare with our results (Methods). To more clearly iden-
tify strongly interacting pairs of sites, we computed the sum
of squared epistatic interactions between all pairs of amino
acids at each pair of sites in the WW domain, using both
popDMS and the previous regression-based approach. Our
results showed good agreement with the pairs of sites that
were previously inferred to have the strongest epistatic in-
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Fig. 2. Mutation effects inferred by popDMS are broadly consistent with alternative methods. a, For the HIV-1 Env BG505 data set, selection coefficients inferred by
popDMS are congruent with enrichment ratios computed using dms_tools2 (Spearman’s ρ = 0.84). At some sites, significant differences are observed (see Supplementary
Fig. 2). b, In the hYAP65 WW domain data set, similar sites are inferred to have strong epistatic interactions using popDMS and log ratio regression 15. Interactions inferred
in ref. 15 have been transformed to compare more directly with interactions inferred by popDMS, and both sets of interactions are normalized to scale between zero and one
(Methods). c, Epistatic interactions inferred by popDMS are substantially sparser than those inferred with the regression-based approach 15.

teractions (Fig. 2b). However, epistatic interactions inferred
by popDMS were substantially sparser than those that had
been inferred before (Fig. 2c). Given the enormous number
of possible epistatic interactions between amino acid variants
at different sites, sparsity is an attractive statistical feature
that can facilitate focus on a smaller number of biologically
important interactions.

In summary, popDMS is an efficient, reliable approach for
inferring mutation effects from DMS data, which is grounded
in evolutionary theory. Across simulations and a wide array
of data sets, we found that popDMS infers more consistent
mutation effects than the popular alternatives used here. Our
approach allows us to combine statistical power across mul-
tiple replicates, and it is also capable of inferring epistatic
interactions given appropriate data. popDMS is written in
Python3 and C++, and uses codon counts in dms_tools for-
mat14 or sequence counts in MaveDB format32 as input, with
code and example visualizations freely available on GitHub
(https://github.com/bartonlab/popDMS, Methods).
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Methods

Evolutionary model
We model rounds of selection in deep mutational scanning
experiments like rounds of reproduction in an evolving pop-
ulation. For this purpose, we use the Wright-Fisher (WF)
model33, a simple model from population genetics where
individuals in a population undergo discrete rounds of mu-
tation, selection, and reproduction. We define the Wright-
Fisher model as follows. We assume that the population con-
sists of N individuals, each of which possesses a genetic se-
quence of length L. Each site in the genetic sequence can
take on one of q possible states, resulting in M = qL possible
genotypes.

In the context of DMS experiments, we are typically inter-
ested in the properties of proteins with different amino acid
variants at each site, and thus we use q = 21 for data analyses
(representing 20 amino acids and a stop, which could also be
further extended to account for gaps). However, the frame-
work that we consider is more general. One could consider
nucleotide sequences with q = 4 states (A, C, T, G), q = 64
codons, and so forth.

At each time t, the state of the population is defined by a
genotype frequency vector z(t) = (z1(t),z2(t), . . . ,zM (t)),
where za(t) = na(t)/N , with na(t) representing the num-
ber of individuals that have genotype a at time t. Under the
WF model, the probability of observing genotype frequencies
z(t+1) in the next generation is binomial,

P
(

z(t+1)
∣∣∣z(t)

)
= N !

M∏
a=1

(
pa(z(t))

)Nza(t+1)

(Nza(t+1))! , (1)

with

pa(z(t)) =
za(t)fa +

∑
b̸=a (µbafb −µabfa)∑M
b=1 zb(t)fb

. (2)

Here fa is the fitness of genotype a, defined in detail below,
and µab is the probability of mutation from genotype a to
genotype b in one generation. In typical experiments, muta-
tion rates are low enough that we assume µab is zero across
all pairs of genotypes a, b.

We assume that the fitness of each genotype depends lin-
early on the amino acid (or nucleotide, codon, etc.) content
of the sequence,

fa = 1+
∑

i

sig
a
i . (3)

In Eq. (3), the si are selection coefficients for each variant i,
which quantify the effect of that variant on fitness. If si is
positive, then the variant is beneficial, and if si is negative,
then the variant is deleterious. Here ga

i is an indicator vari-
able, which is equal to one if genotype a possesses the vari-
ant i, and zero otherwise. The variant indicator i is a generic
index that runs across all possible amino acids or states at
each site in the sequence. For example, let us define a geno-
type sequence a = {T,E,K}. For this sequence, ga

(1,T ) = 1,
ga

(2,E) = 1, ga
(3,K) = 1, and all other ga

i = 0.

Following Eq. (1), the probability of a sequence of K
genotype frequency vectors {z(t1),z(t2), . . . ,z(tK)}, con-
ditioned on an initial distribution of genotype frequencies
z(t0), is given by the product of the individual transition
probabilities,

K−1∏
k=0

P (z(tk+1)|z(tk)) . (4)

Inferring fitness effects of mutations with popDMS
We view sequencing results in a DMS experiment as mea-
surements of the genotype frequency vectors z(t). To in-
fer the functional effects of mutations, we take a Bayesian
approach, seeking the selection coefficients s that maximize
the posterior probability of the entire evolutionary trajectory
Eq. (4). This includes a Gaussian prior distribution for the
selection coefficients

Pprior (si) ∝ e−γs2
i . (5)

Here γ encodes of the width of the prior distribution, which
can also be thought of as L2-norm regularization of the se-
lection coefficients. The overall posterior distribution for the
selection coefficients is then given by

Ppost(s) = L({z(t1),z(t2), . . . ,z(tK)}))
∏

i

Pprior(si) ,

(6)
where the likelihood of the data L is given by Eq. (4).

Following recent computational advances34, to simplify
the likelihood, we consider the diffusion limit of the WF
model. In this limit, we assume N is large and the s and
µab are small. This transforms Eq. (4) from a complicated
function of the selection coefficients into a Gaussian, though
Eq. (4) retains a complex dependence on the genotype fre-
quencies. The maximum a posteriori (MAP) estimate for the
selection coefficients ŝ is given by

ŝi =
∑

j

[
K−1∑
k=0

∆tkC(tk)+γI/N

]−1

ij

(
∆xj −µfl

j

)
,

(7)

where ∆tk = tk+1 − tk, ∆xj = xj(tK) − xj(t0), and µfl
j is

the net expected change in the frequency of variant j over
the course of the experiment due to mutation alone. Typi-
cally, µfl is assumed to be zero, except for experiments in-
volving viral replication, where mutation rates can be high
enough to produce observable changes in frequency. Here
C(t) is the covariance matrix of variant frequencies xi(t) =∑M

a=1 ga
i za(t), which has entries

Cij(t) =
{

xi(t)(1−xi(t)) i = j

xij(t)−xi(t)xj(t) i ̸= j .
(8)

Here xij(t) =
∑M

a=1 ga
i ga

j za(t) is the frequency of geno-
types at time t that contain both variants i and j.
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The estimate of the selection coefficients ŝi given in Eq. (7)
can be explained intuitively. First, for simplicity, consider
the matrices C(tk) to be diagonal. Then, the estimate for
ŝi depends on how much variant i has increased in fre-
quency over the course of the experiment, after correcting for
changes in frequency that are not due to functional selection,
(∆xi − µfl

i ). This quantity is normalized by the variance of
the variant frequency xi(tk) over time (Eq. (8)). In the limit
that xi(tk) is small (and again, that the off-diagonal terms
are zero), the estimate for ŝi is similar to an enrichment ratio,
because in this limit 1 − xi(tk) ≈ 1. However, this estimate
is also shrunk by a factor of γ due to the prior distribution
for the selection coefficients. Importantly, the variance also
becomes small when xi(tk) is close to one, as is often the
case for wildtype (WT) or reference amino acids in DMS ex-
periments. This distinguishes the treatment of WT variants in
popDMS as compared to ratio-based methods and regression-
based methods that do not assume logistic growth.

Off-diagonal terms in Eq. (7) account for the influence of
genetic background on changes in variant frequency. For ex-
ample, a variant i may increase in frequency not because it
has a beneficial functional effect, but rather because it ap-
pears on the same genetic sequence with other beneficial vari-
ants more often than expected by chance (i.e., positively co-
varying with other beneficial variants; see Eq. (8)). In pop-
ulation genetics, this phenomenon is referred to as genetic
hitchhiking35. In DMS data, covariances cannot always be
computed due to limited read lengths, but this information
can be used to enhance predictions when it is available.

To derive Eq. (7), we assumed that the number of individ-
uals in the population, N , is constant. However, in experi-
ments (and in real populations), N can vary in time. Incor-
porating time-varying population sizes leads to similar esti-
mates of selection, but with a larger uncertainty in the in-
ferred parameters (see ref.36 for a related model). For sim-
plicity, we will maintain the assumption that N is constant.
Additionally, in the discussion below we will absorb the pop-
ulation size N into the definition of γ, so that the strength of
the prior distribution does not rely on an arbitrary definition
of population size.

Joint estimates of selection coefficients across exper-
imental replicates
We model experimental replicates as alternative evolutionary
histories, subject to the same functional effects of mutations
but with different stochastic realizations of evolution (and po-
tentially different starting conditions). The posterior proba-
bility for the selection coefficients across R replicates is then
given by

Ppost(s) =
R∏

r=1
L({zr(t1),zr(t2), . . . ,zr(tK)}))

×
∏

i

Pprior(si) .

(9)

Here each experimental replicate has a different index r, and
the likelihood across all replicates is the product of the likeli-
hood for each individual replicate. Since each L is Gaussian

in the selection coefficients, the product is also Gaussian, and
the MAP selection coefficients can be computed as in Eq. (7),
yielding

ŝi =
∑

j

[
R∑

r=1

K−1∑
k=0

∆tkCr(tk)+γI/N

]−1

ij

×
R∑

r=1

(
∆xr

j −µr,fl
j

)
.

(10)

Correction for sequencing errors
For some data sets, information on sequencing error rates is
available. For example, this can be obtained by sequencing
a library consisting of all WT sequences, so that all differ-
ences from WT are likely attributable to sequencing errors.
When this data is available, we compute corrected mutant and
WT counts by subtracting the expected contributions from se-
quencing errors.

Optimizing the regularization strength
For simplicity, we incorporate the WF population size N
into the prior parameter γ to define an effective regulariza-
tion strength γ′ = γ/N . Larger values of γ′ put a higher
penalty on inferred selection coefficients, thereby suppress-
ing their values, but also limiting the effects of sampling
noise. Smaller values of γ′ allow for the inference of larger
selection coefficients, but in turn, these estimates are more
sensitive to noise.

One can choose a single value of γ′ to use for all data
sets, but this parameter can also easily be optimized for an
individual data set. The most computationally intensive step
in inferring mutation effects (i.e., selection coefficients) with
popDMS is computing the variant frequencies and covari-
ances from sequencing data. After this step has been com-
pleted, it is straightforward to sweep through a range of γ′

values and test their results for each data set.
We found that the average correlation of inferred muta-

tion effects between replicates typically behaves like a logis-
tic function of log(γ′). For very small values of γ′, sampling
noise is not effectively suppressed, and the correlation of in-
ferred mutation effects between replicates is lower. As γ′

increases, noise is suppressed, leading to higher correlations
between replicates. At high values of γ′, high correlations
between replicates are typically preserved, but the inferred
selection coefficients are shrunk strongly towards zero.

We reasoned that an optimal choice for the regulariza-
tion strength γ′ would be the smallest value of γ′ that effec-
tively suppresses sampling noise, as this would avoid shrink-
ing estimated selection coefficients unnecessarily. To com-
pute this value, for each experimental data set described be-
low, we swept through values of γ′ in even logarithmically
spaced steps from roughly 1/B, where B is the maximum
read depth, to 1000. For each value of γ′, we computed the
correlation between replicates. We then computed the differ-
ence ∆R = Rmax −Rmin between the maximum correlation
and minimum correlation between replicates across all val-
ues of γ′. To determine the optimum value of γ′, we started
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with the value that corresponds to the maximum correlation
between replicates and moved to progressively smaller val-
ues, stopping when the correlation drops by more than 10%
of ∆R from one value of γ′ to the next.

While sweeping through values of γ′ improves our consis-
tency across data sets, allowing us to adjust our regularization
to match the level of noise in the data, we emphasize that this
step is not essential to obtain robust results. A simple choice
of γ′ = 0.1 is nearly optimal for every data set we considered,
with the exception of the influenza PR8 study37. This data set
is the only one in which the correlation between replicates is
not roughly a logistic function of the regularization strength.

Generating logo plots with popDMS
Inferences from DMS data such as amino acid preferences
(derived from enrichment ratios) have often been used to gen-
erate logo plots that show the relative dominance of different
amino acids at each site. However, while preferences natu-
rally sum to one, selection coefficients inferred by popDMS
can be both positive and negative. To obtain preference-like
logo plots using selection coefficients inferred by popDMS,
computed exponentially transformed values

pi = eβsi , (11)

where the scaling factor β was approximately chosen to max-
imize the correlation between the transformed selection coef-
ficients pi and amino acid preferences for the same data set.

Inference of epistasis
We extended our approach to infer pairwise epistatic interac-
tions between variants by adding epistatic interactions sij to
the previous fitness function Eq. (3), i.e.,

fa = 1+
∑

i

sig
a
i +

∑
i

∑
j ̸=i

sijga
i ga

j . (12)

As for the selection coefficients defined above, if an epistatic
interaction sij is positive, then the presence of variants i
and j together increases fitness more than would be expected
from the combined effect of the individual variants. When
sij is negative, variants i and j together are more deleterious
than expected if they were independent.

With this extension of the fitness model, one can then com-
pute the posterior probability for the change in genotype fre-
quencies, as in Eq. (6). We also assume a Gaussian prior
distribution for the epistatic interactions that is centered at
zero and has the same width as for the selection coefficients.
The MAP selection coefficients for the selection coefficients
and epistatic interactions have a form analogous to Eq. (7),
but with an expanded index that runs over all variants i and
all pairs of variants (i, j). Additional terms in the covariance
matrix are then given by

Ci,(i,j)(t) = xij(t)(1−xi(t)) ,

Ci,(j,k)(t) = xijk(t)−xi(t)xij(t) ,

C(i,j),(i,j)(t) = xij(t)(1−xij(t)) ,

C(i,j),(i,k)(t) = xijk(t)−xij(t)xik(t) ,

C(i,j),(k,l)(t) = xijkl(t)−xij(t)xkl(t) ,

(13)

with

xijk(t) =
M∑

a=1
ga

i ga
j ga

kza(t) ,

xijkl(t) =
M∑

a=1
ga

i ga
j ga

kga
l za(t) .

(14)

popDMS differs from some alternatives to estimating epis-
tasis in that information about pairwise interactions is gained
from all sequences that bear two or more non-reference vari-
ants. For example, one previously developed approach effec-
tively estimated the fitness of sequences with exactly two mu-
tations and compared this with estimates of the fitness for cor-
responding single mutants to estimate the strength of epistatic
interaction between the mutations38.

At present, inferring epistatic interactions from DMS data
with popDMS is only computationally feasible for short se-
quences due to the large size of the covariance matrix. Alter-
native approaches that strictly enforce sparsity and reduce the
number of possible interactions to estimate could potentially
ease these computational restrictions.

Testing performance in simulations

We simulated evolution following the WF model over a num-
ber of generations to test the performance of popDMS. To
reproduce finite sampling statistics similar to those observed
in experimental data, we used the initial genotype frequency
data from an experimental data set39. We ordered the variants
by frequency at each site and inferred a best-fit multinomial
model describing the frequency distribution across sites using
PyStan40. This inferred distribution thus captures a typical
hierarchy of frequencies observed in DMS experiments, from
high frequency (WT/reference) variants to rare ones, whose
counts may be of the same order as the read depth.

In our simulations, selection coefficients for all variants
were chosen at random from a normal distribution with mean
zero and standard deviation 0.1. True starting frequencies
were sampled at random from the inferred multinomial distri-
bution using PyStan. We then simulated up to 10 generations
of evolution following the WF model, here assuming a muta-
tion rate of zero and population size of N = 108. From these
true trajectories, we obtained finitely sampled frequency tra-
jectories by multinomial sampling from the true frequencies
at each generation, with various choices for the sampling
depth. To highlight stochasticity, we used a sampling depth
of B = 5×104 sequences in Supplementary Fig. 1a.

We used this data to compute the average correlation for
selection coefficients inferred from different replicates using
popDMS, which varies depending on the number of genera-
tions of data used (Supplementary Fig. 1b). Intuitively, ob-
serving the evolution for a longer time leads to more precise
estimates.

We compared the results of popDMS against other com-
mon approaches, which we implemented as described below.
To compute enrichment ratios, we compare the fraction of
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reads with a particular variant i pre- and post-selection,

Ei =
ni

post/Bpost

ni
pre/Bpre

. (15)

Here ni
pre and ni

post are number of reads with variant i before
selection and after selection, respectively. Similarly, Bpre
and Bpost represent the total number of reads before and after
selection. To compute log ratio scores, we used the natural
logarithm of the enrichment ratios,

Elog
i = log

(
ni

post/Bpost

ni
pre/Bpre

)
. (16)

Finally, log ratio regression scores were computed by calcu-
lating the logarithm of the enrichment ratio Eq. (16) for each
variant at each generation, then extracting the slope of the
linear model the best fits the change in log enrichment ratios
over time.

DMS data sets
Data sets used in this paper were obtained from 15 publica-
tions37–39,41–52. Additional information about these data sets,
and the methods used to analyze them, is summarized in Ta-
ble 1.

Comparison with prior studies of epistasis
Here we analyzed a data set from Araya and collaborators,
which explored epistasis in the WW domain of the hYAP65
protein38. There, they define epistasis in a way that dif-
fers from our definition (i.e., the sij in Eq. (12)). For each
genotype variant a, Araya et al. define a parameter Wa =
2(Sa−SWT), where the Sa are best-fit slopes of the logarith-
mic enrichment ratios for variant a. SWT is the slope for the
WT variant, which they use to normalize the results. They
use the quantity ϵab = Wab − WaWb as the primary metric
of epistasis. Here, a and b represent genotypes with a single
mutation, and ab the genotype that features only these two
mutations.

When the frequency of a variant is small, the Sa computed
by Araya et al. are similar to our fa. Thus, to compare the
quantities inferred by Araya et al. to our sij , we computed a
set of transformed scores, which we write as

s̃ij = log2 (Wij)− log2 (Wi) log2 (Wj) . (17)

There is good overall agreement in the epistatic interactions
sij inferred by popDMS and the transformed interactions s̃ij ,
computed from the W values of Araya et al. (Pearson’s R =
0.73, Spearman’s ρ = 0.75). Figure 2a similarly shows broad
agreement between the sum of squared epistatic interactions
between variants at each pair of sites in the WW domain,
though those inferred by popDMS are sparser (Figure 2b).

Comparison with natural frequencies of influenza vari-
ants
In general, it is challenging to validate inferences about the
fitness or functional effects of amino acid variants inferred

from DMS experiments because “ground truth” measure-
ments for these effects do not exist. However, one possible
method of validation is to compare the inferred fitness effects
of variants to the frequency of mutations observed in natu-
ral populations. This approach was explored by Thyagarajan
and collaborators in their study of the effects of mutations in
the influenza hemagglutinin protein48.

We performed a similar analysis to compare our results to
fitness effects inferred using enrichment ratios for the same
data set48. While it is possible to directly correlate variant
frequency and the inferred fitness effect of the variant, this
connection is not entirely natural because frequency should
be determined not just by the fitness effect of a variant, but
also by the relative fitness effects of other possible variants at
the same site.

To make a clearer connection with the data, we reasoned
that, in most cases, the amino acid with the highest frequency
in natural populations should be the variant with the highest
fitness at each site. We thus ranked the fitness effects of each
amino acid variant at the same site, and computed the rank
of the top variant according to both selection coefficients in-
ferred by popDMS and enrichment ratios. For popDMS, the
amino acid most frequently observed in natural populations
had an average rank of 2.1 across sites (median 1), compared
to an average rank of 2.7 (median 1) for enrichment ratios.

To determine the extent to which the amino acid that is
most frequently observed in natural populations is predicted
to be dominant at each site, we also computed a z score for
the most frequent variant at each site. This was computed by
taking the metric of fitness (selection coefficients or enrich-
ment ratios) for the most frequent variant at each site, sub-
tracting the mean value for the same site, and dividing by the
standard deviation of values at that site. We found an average
z score for the most frequent variant of 3.5 using popDMS,
compared to 2.6 for enrichment ratios.

Thus, we find that selection coefficients match well with
the corresponding frequencies of amino acid variants in a nat-
ural population. Results obtained using popDMS also com-
pare favorably with prior results computed using enrichment
ratios48.

Data and code
Raw data and code used in our analysis are available in
the GitHub repository located at https://github.com/
bartonlab/paper-DMS-inference. This repository
also contains Jupyter notebooks that can be run to reproduce
the results presented here. Code for popDMS alone, with-
out the analysis contained in this paper, is also provided in
a separate GitHub repository at https://github.com/
bartonlab/popDMS. popDMS is coded in Python3 and
C++.
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Protein Source Inference method (software) Number of
time points

Number of
replicates Reference

1 Zika Virus Envelope

Virus

Enrichment ratio (dms_tools2)

2 3 Sourisseau et al., 2019 41

2 HIV-1 Envelope - BG505 2 3
Haddox et al., 2018 39

3 HIV-1 Envelope - BF520 2 3
4 HIV-1 Envelope - BF520 - Human 2 2

Roop et al., 2020 42
5 HIV-1 Envelope - BF520 - Rhesus 2 2
6 HIV-1 Envelope - BG505 - VRC34 2 2

Dingens et al., 2018 437 HIV-1 Envelope - BG505 - FP16 2 2
8 HIV-1 Envelope - BG505 - FP20 2 2
9 H3N2 Influenza Hemagglutinin - Perth2009 2 4 Lee et al., 2018 44

10 H1N1 Influenza Polymerase Basic 2 - CCL141 2 3
Soh et al., 2019 45

11 H1N1 Influenza Polymerase Basic 2 - A549 2 3
12 H1N1 Influenza Matrix Protein M1 2 3 Hom et al., 2019 46

13 H3N2 Influenza Nucleoprotein - MxAneg

Enrichment ratio (dms_tools)

2 2
Ashenberg et al., 2017 47

14 H3N2 Influenza Nucleoprotein - MS 2 2
15 H1N1 Influenza Nucleoprotein - PR8 2 3

Doud et al., 2015 37
16 H3N2 Influenza Nucleoprotein - Aichi68C 2 2
17 H1N1 Influenza Hemagglutinin - WSN Enrichment ratio (mapmuts) 2 3 Thyagarajan et al., 2014 48

18 Ubiquitination factor E4B - Ube4b Mouse

Enrichment ratio (Enrich)

4 2 Starita et al., 2013 49

19 BRCA1 RING Domain - Y2H 1

Human

4 3
Starita et al., 2015 5020 BRCA1 RING Domain - Y2H 2 4 3

21 BRCA1 RING Domain - E3 6 6
22 Myeloproliferative Leukemia Protein Log ratio

regression (Enrich2)
2 6

Bridgford et al., 2020 51
23 Myeloproliferative Leukemia Protein - S505N 2 6
24 hYAP65 WW domain - WW

Log ratio regression
4 2 Araya et al., 2012 38

25 BRCA1 exon 18 - DBR1 4 2 Findlay et al., 2014 52

Supplementary Table 1. Summary of data sets studied in this work.
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Supplementary Fig. 1. popDMS is robust to finite sampling error. a, Due to
finite sampling of the data, variant frequencies can appear to fluctuate over time
even if the underlying behavior is smooth, complicating inference. Results from an
example simulation (Methods). b, As the number of generations used for inference
in simulations increases, all methods become more robust. popDMS is especially
robust in inferring mutation effects from limited data with few rounds of selection.
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Supplementary Fig. 2. Comparison of selection at individual sites inferred by
popDMS and enrichment ratios for the HIV-1 Env BG505 data set. a, Expo-
nentially transformed selection coefficients inferred by popDMS (see Methods) are
similar to preferences (normalized enrichment ratios) at sites 287 and 417. At site
287, both methods agree on the dominance of phenylalanine. At site 417, both
methods find broad tolerance for different amino acid variants. b, In contrast, dif-
ferences are observed between popDMS and preferences at sites 592 and 596.
In both cases, popDMS finds the reference amino acid (isoleucine at site 592 and
serine at site 596) to be strongly favored due to its increase in frequency during the
experiment. These frequency changes were small relative to the initial frequency of
the amino acid, but they were large considering the limited capacity for the amino
acid to grow in frequency. This latter factor is captured by popDMS, but is not typi-
cally accounted for in ratio-based approaches.
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