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Introduction

No medical procedure has saved more lives or money than 
vaccination. Successful vaccination programs have resulted 
in the eradication of smallpox, which had caused devastation 
since antiquity, and the near-eradication of polio. Vaccines for 
numerous childhood diseases are also a major contributor to 
the reduction of infant mortality. Vaccination manipulates our 
immune system in a way that enables it to act rapidly upon 
infection to eliminate a specific pathogen, thereby preventing 
disease.

The immune system of higher organisms [1] can be 
roughly partitioned in to two linked parts. The first is the 
innate immune system, which is made up of many types of 
cells and molecules that can bind to (‘recognize’) molecules 
which are often displayed on the surface of many pathogens, 
but not on the surface of host cells. Successful recognition 
can result in elimination of the pathogen. The innate immune 
system is very effective as evidenced by the fact that most of 
the time we are not sick despite constant exposure to infec-
tious pathogens. However, innate immune responses are not 
pathogen specific. Many viruses and bacteria have evolved 
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strategies to evade innate immunity, and when they do, an 
infection is established. The adaptive immune system gets 
involved when this happens, and it enables us to mount path-
ogen-specific responses against a diverse and evolving world 
of microbes. This is remarkable because it is not specificity to 
a pre-determined list of pathogens; in fact, pathogen-specific 
responses can be mounted against microbes which had not 
evolved when a person was born.

To roughly see how this works, consider infection with a 
virus (figure 1). A virus hijacks the transcriptional machinery 

of the host cell enabling the synthesis of viral proteins and 
the assembly of new virus particles that can infect other cells. 
B lymphocytes (B cells) are important players in adaptive 
immunity. They display a receptor on their surface called the 
B cell receptor (BCR). The gene that codes for the BCR is 
inherited as various flavors of different gene segments. During 
synthesis of a B cell, a flavor of each gene segment is chosen 
stochastically (subject to some constraints), and the segments 
are joined to form the gene encoding this B cell’s receptor 
[2]. Thus, the BCR on a particular B cell is likely to be dis-
tinct from the receptor on most other B cells. If the BCR on 
a particular B cell can bind strongly to the surface proteins 
of a particular virus, then biochemical reactions ensue in the 
B cell that can result in its activation. Activated B cells then 
undergo a process called affinity maturation [3] (see below), 
which ultimately results in the secretion of a soluble form of 
a mutated BCR (antibody) that has an even higher affinity for 
the viral surface proteins. Antibodies can bind to the virus and 
dispose of it in numerous ways which require the action of the 
components of the innate immune system.

B cells primarily act on virus particles that are in blood or 
extracellular spaces. T lymphocytes (T cells), the other impor-
tant arm of adaptive immunity, are largely responsible for the 
control of intracellular pathogens. Some of the viral proteins 
in infected cells are chopped up into short peptide fragments 
by molecular machinery in human cells. These peptides (p) 
are displayed on the surface of infected cells in complex with 
a human protein called major histocompatibility complex 
(MHC; in humans this protein is also referred to as human 
leukocyte antigen or HLA). We each have six to twelve types 
of MHC molecules, but there are thousands of variants in the 
human population [4]. Different types of MHCs can bind dif-
ferent peptides. For reasons similar to that described for B 
cells, most T cells express a distinct surface receptor, called 
the T cell receptor (TCR). If the TCR on a particular T cell can 
bind strongly to a particular virus-derived p-MHC molecule 
displayed on an infected cell, biochemical reactions in the T 
cell ensue which result in activation and proliferation [1, 5]. 
Activated T cells can then coordinate an immune response in 
a number of different ways. For example, certain kinds of T 
cells, called cytotoxic T lymphocytes (CTL), are such that, if 
an activated CTL sees another cell displaying the same viral 
peptide that originally activated it, products are secreted that 
kill the infected cell and the virus particles it harbors. Another 
kind of T cells, called T helper cells, play a key role in  antibody 
production (see below) and the secretion of chemicals that are 
important for mounting immune responses.

As was mentioned above, upon activation due to  interactions 
with virus particles (which takes place in lymph nodes), B 
cells undergo affinity maturation. Activated B cells can nucle-
ate structures within lymph nodes called germinal centers 
(GCs) [6], where a Darwinian evolutionary process ensues in 
a short period of time. The activated B cells proliferate and 
mutations are introduced in to the binding site of the BCR at 
a high rate through a process known as somatic hypermuta-
tion. B cells with mutated receptors then migrate to another 
part of the GC, where cells of the innate immune system (fol-
licular dendritic cells) display the virus. B cells compete to 

Figure 1. (a) Schematic depiction of the adaptive immune 
response to infection. Certain kinds of T cells can kill infected 
cells by recognizing virus-derived peptides in complex with MHC 
molecules on the surface of the infected cell. B cells generate 
antibodies, soluble forms of its B cell receptor, which can 
primarily neutralize viruses in extracellular spaces. (b) Schematic 
of the affinity maturation cycle. B cells proliferate and develop 
mutated versions of their receptors in the dark zone. In the light 
zone they encounter FDCs which present antigens. B cells that 
are successfully able to bind to and engulf antigens receive 
survival signals from T helper cells that allow them to continue 
to proliferate. A fraction of successful B cells exit the germinal 
center as plasma cells or memory B cells, while others are recycled 
for further rounds of mutation and selection. B cells that are not 
positively selected undergo apoptosis.
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bind to the spikes on the virus. If the binding strength exceeds 
a threshold, B cells can internalize the virus. B cells with a 
BCR that binds more strongly to the virus’ spike have a higher 
probability of binding and internalizing more virus particles. 
The B cells that successfully internalize virus particles then 
display virus-derived p-MHC molecules on their surface. B 
cells compete with each other to bind to the TCR on T helper 
cells, which are present at limited numbers in GCs [7]. This 
interaction can result in a survival signal (intracellular bio-
chemical reactions) for the B cell, allowing it to continue the 
affinity maturation process. B cells that internalize more virus 
particles have a higher probability of receiving this survival 
signal because they display more p-MHC molecules to which 
TCRs can bind. B cells that do not internalize virus particles 
or fail to receive a T helper cell-mediated survival signal die. 
Some of the positively selected B cells emigrate from GCs in 
to the blood and tissues as plasma cells that secrete the BCR 
in soluble form (i.e. antibodies) and as memory cells (see 
below). Most of the surviving B cells are recycled for further 
rounds of mutation and selection [7–9]. Thus, as time ensues, 
more potent antibodies with higher affinity for the infecting 
virus are produced.

After an infection is cleared, most of the T cells and B cells 
that proliferated in response to this particular virus die. But, a 
few remain as so called memory cells that can mount robust 
and rapid responses upon reinfection with the same virus. This 
pathogen-specific immunological memory is the basis for vac-
cination. A vaccine aims to induce memory T cells, B cells, 
and antibodies which are specific for the pathogen against 
which protection is desired.

Perhaps as early as the tenth century, the Chinese tried to 
protect people from smallpox by rubbing the fluids in scabs 
from diseased people onto the skin of healthy people, resulting 
in the protection of some and death of others [10]. Modern vac-
cination roughly follows the paradigm pioneered by Jenner and 
Pasteur in the nineteenth century. A dead or weakened form of 
the pathogen is injected into humans with the goal of inducing 
effective memory immune responses. It is interesting that this 
empirical protocol was developed before we knew much about 
the immune system, and Jenner did not know about microbial 
pathogens. In the twentieth century, additives (adjuvants) were 
added to vaccines to help stimulate innate immune responses 
that are critical for the development of potent adaptive immune 
responses. The design of adjuvants remains largely an art and 
many new formulations fail to work.

In recent years, some pathogens have evolved which have 
defied successful vaccination using the traditional empirical 
paradigm. Prominent examples are HIV, HCV, tuberculosis, 
and malaria, many of which are wreaking havoc around the 
world. We do not have a broadly effective vaccine against 
influenza either, and attempts to predict the right vaccine 
target for the ensuing year, and thus the vaccine, often fail. 
Many of these pathogens share two features: (1) They present 
themselves in different guises, thus making them hard to tar-
get with specific immune memory responses. (2) They often 
degrade, or hide from, the immune system.

HIV has characteristics which are extreme examples of both 
these features. It is a highly mutable virus with a very rapid 

replication rate. Thus, it generates many mutant strains when 
it infects even a single person. For example, the diversity of 
HIV strains in a single infected person is not that different from 
the diversity of circulating influenza strains in the entire world 
in a particular year, and the latter is dwarfed by the diversity 
of circulating strains in a single region in Africa during the 
same time period [11] (figure 2). The high mutability allows 
HIV to evade natural or vaccine-induced immune responses 
[12]. Furthermore, HIV principally infects and eventually kills 
human T helper cells, thus degrading the  adaptive immune 
system. This is the reason why acquired immunodeficiency 
syndrome (AIDS), the disease associated with HIV infec-
tions, results in a severe state of immunodeficiency allowing 
many normally easy to control infections to afflict patients. 
Other pathogens listed above also mutate (e.g. influenza and 
tuberculosis) and malaria uses a different strategy in that it 
expresses different interchangeable proteins on the surface. 
The bacterium that causes TB hides from the immune system 
in red blood cells. Vaccine design against HIV is particularly 
daunting because, unlike other pathogens for which vaccines 
exist, HIV infection is not known to have ever been success-
fully cleared by natural human immune responses.

Successful vaccination against pathogens that have evolved 
sophisticated strategies to evade human immune responses 
will benefit from the development of firm scientific princi-
ples that can guide rational vaccine design [10]. At least two 
important issues must be studied in this regard: (1) What are 
the appropriate targets for vaccine-induced immune responses 
that will limit or eliminate the ability of these pathogens to 
evade such responses while simultaneously maintaining their 
viability/virulence? (2) How can such immune responses be 
induced by vaccination in humans with diverse genotypes?

Figure 2. Comparison of phylogenetic trees generated from 
collections of HIV and influenza sequences. The global diversity of 
influenza sequences in a given year (a) is comparable to the diversity 
of HIV sequences within a single chronically infected individual (b), 
and completely dwarfed by the observed diversity of HIV sequences 
in a single region in Africa (d). Figure adapted with permission from 
[11]. Copyright 2001 Oxford University Press.
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A convergence of several factors is beginning to enable 
us to address these questions. Biologists and clinicians can 
collect enormous amounts of data on sequences of mutant 
strains of pathogens, and more recently, it is also becoming 
possible to interrogate the immune system on an unprece-
dented scale. Both the immune system and pathogens func-
tion by collective processes that involve myriad individual 
components, thus making mechanistic interpretation of this 
data complex. Physicists, especially statistical physicists, 
have begun to play a role in translating this type of data to 
mechanistic knowledge that addresses the questions noted 
above. The goal of developing mechanistic principles that 
can be harnessed for rational design of vaccines is bring-
ing physicists, biologists, clinicians, and engineers to work 
together.

In this perspective piece, we will focus primarily on our 
efforts at the intersection of physics and biology that aim to 
address the first question noted above—i.e. what are optimal 
vaccine targets? But, we will also discuss a few issues perti-
nent to the second question. For each topic that is discussed 
in some detail, we will briefly review the current state of the 
science and note the many open questions. To make our dis-
cussions concrete, we will consider primarily one virus, HIV. 
However, to contrast the biology and challenges posed by 
different viruses, we will sometimes refer to the challenges 
posed by influenza, for which some significant progress has 
been made in recent years. We emphasize that this is a per-
spective piece, not a comprehensive review.

Brief description of the biology of HIV  
and definition of the key challenges

HIV is thought to have been transmitted to humans from 
monkeys, and is estimated to have been circulating in small 
populations of humans for nearly a century [13]. The first 
well-documented cases were reported in 1981. To date, HIV 
has infected over 78 million people and almost 40 million 
people have died from complications associated with AIDS. In 
developed nations, HIV infections can be controlled by daily 
expensive medication, but it cannot be cured. In other parts of 
the world, HIV continues to wreak havoc, with sub-Saharan 
Africa being the epicenter of the disease. For example, each 
day there are 1000 new HIV infections in South Africa alone. 
A vaccine or cure is urgently needed, but no successes have 
been reported over more than thirty years since it became 
known that the causative agent of AIDS was this virus.

HIV is a retrovirus, which carries its genome in the form 
of RNA. The virus has a lipid membrane through which pro-
teins protrude. These Envelope proteins are gp120 and gp41, 
which form a non-covalently bonded trimer which constitutes 
the viral spike (figure 3). The outer membrane surrounds a 
capsid made up of structural proteins which encloses the 
RNA genome and other key proteins important for viral func-
tion. The trimeric spike binds to host cell surface proteins to 
initiate infection [14]. For example, the spike can bind to a 
receptor called CD4, which is primarily expressed on the sur-
face of T helper cells [15, 16]. This binding event leads to 

Figure 3. Representation of the HIV envelope protein in its native shape, as a trimer of gp120 and gp41 subunit proteins. Glycans surround 
the CD4 binding site region, hindering its access by antibodies. Binding sites of common broadly neutralizing antibodies are indicated by 
arrows. Figure adapted with permission from [111]. Copyright 2012 Elsevier.
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a conformational change in gp120, resulting in the dissocia-
tion of gp41 which then forms a six-helix bundle. This also 
allows gp120 to bind to a second receptor on the surface of the 
host cell, which can be either CCR5 or CXCR3. These bind-
ing events and the free energy gained from ‘crystallization’ 
of gp41 result in fusion of the virus’ membrane with that of 
the host cell membrane, resulting in release of the capsid in to 
the cytoplasm. The viral capsid is then uncoated, releasing its 
contents. A viral protein, Reverse Transcriptase, then converts 
the RNA strands in to DNA. This viral DNA, also called a 
provirus, is transported in to the nucleus of the host cell along 
with a viral protein called integrase, which inserts the viral 
DNA in to the genome of the host cell, thus infecting this cell 
for life. The transcriptional machinery of the host cell can then 
help synthesize viral proteins.

HIV has nine genes, with four of them, Gag, Pol, Nef, and 
ENV being the most important. Gag codes for the proteins that 
form the structure of the virus (such as the ones that make up 
the capsid), Pol codes for Reverse Transcriptase, Integrase, and 
Protease, ENV codes for gp120 and gp41, and Nef plays a role 
in downregulation of HLA proteins and CD4 (downregulation 
of which helps the virus bud out of infected cells). Gag, Pol, 
and ENV genes code for polyproteins, and Protease cuts them 
in to the right individual proteins. In a series of steps, the virus’ 
proteins are properly assembled at the membrane of the host 
cell [17]. A part of the host cell membrane becomes the mem-
brane for a new virus particle as it buds out.

Reverse transcription is not a very high fidelity process, 
and for HIV, mutations are introduced at the rate of 3  ×  10−5 
per base pair per replication cycle [18]. HIV’s genome is 
about 104 in length, and so this implies that during every 
 replication cycle there is a 0.3 probability that a mutant will 
result. Moreover, Reverse Transcriptase can hop from one 
RNA molecule to the other, thus generating more options for 
creating diversity, and when two different RNA genomes are 
available, recombination occurs. Fitting parameters in ordi-
nary differential equations to data from patients treated with 
drugs revealed that HIV replicates very rapidly [19], produc-
ing 1010 to 1011 virus particles per day in patients [20]. Of 
course, many of the mutant strains that are produced do not 
grow as they cannot form infective virus particles. But, taken 
together, the high mutation and replication rates are the main 
reasons underlying the extraordinary diversity of HIV strains 
circulating in the population and in individuals.

Upon successful infection, the virus replicates rapidly, and 
the viral load (that is, the number of viruses circulating in 
the host) increases. As immune responses develop, the viral 
load decreases and then stabilizes at a steady state where the 
immune system and the virus are in balance [21]. The steady 
state viral load varies widely between patients [22]. Because 
HIV kills the host cell when new virus particles bud out, the 
number of CD4 T cells in an infected patient declines at first 
and then increases again after the immune response develops. 
The period when the viral load and CD4 T cell counts are  
 stable is called the asymptomatic phase as no disease man-
ifests. HIV belongs to a class of viruses called lentiviruses 
(slow viruses) which cause disease slowly. Without treatment 
the immune system ultimately loses the battle, viral load goes 

up, and CD4 T cells decrease in numbers. At this point, the 
individual’s immune system is severely compromised, and 
many opportunistic infections ensue leading ultimately to 
death.

The high mutability of HIV is a major reason why an effec-
tive vaccine does not exist [23]. An enormous diversity of pos-
sible mutant strains could infect a person, and the virus could 
mutate within a person after infection to evade specific vac-
cine-induced (or natural) immune responses. So, the challenge 
is to understand how to effectively attack diverse HIV strains 
through immune responses that can be induced in people 
with different genotypes. Although some immune responses 
are known to be more efficacious either in patients or in vitro  
[24–27], the HIV population has been met overwhelmingly 
with immune responses that are ineffective in controlling 
infection. In contrast, Influenza has been historically subjected 
to specific classes of effective natural and vaccine-induced 
immune responses. The challenge for vaccination against 
influenza is to determine which virulent strains that have not 
been previously subjected to effective immune responses (and 
for which no immune memory exists in the population) are 
likely to evolve and infect people in the ensuing year [28]. The 
implications of this difference in evolutionary history for vac-
cine development will be noted in the sections below.

In this perspective, we will focus on only two aspects of the 
challenge of creating an effective HIV vaccine. First, we will 
ask whether the data on thousands of sequences of HIV pro-
teins derived from virus samples extracted from patients can 
be translated in to knowledge of the mutational vulnerabilities 
of the virus; i.e. which types of mutations is the virus unable 
to make to evade immune responses and still remain viable. 
This knowledge can be used to design the active component 
of a potentially effective T cell-based therapeutic vaccine. We 
will also briefly describe one aspect of how the temporal pat-
tern in which active components of a vaccine are administered 
may be important for inducing the desired antibody responses 
for a prophylactic vaccine.

Determining the mutational vulnerabilities of HIV

At first glance, determining the mutational vulnerabilities of 
a virus like HIV appears to be a simple problem given that 
today we can sequence large numbers of viruses derived from 
patients. Just lining up all these sequences and looking for res-
idues that appear relatively conserved (e.g. measured by low 
entropy) should reveal the answer. Focusing a  vaccine-induced 
immune response to target such residues should be an effec-
tive strategy to control the virus. This is because to evade such 
an immune response, HIV would have to evolve a mutation at 
one of these residues, and that should hurt viral function as the 
residues are relatively conserved for a reason. This strategy 
is blunted because HIV can evolve other mutations, so-called 
compensatory mutations, which can partially restore the fit-
ness cost incurred by making the primary immune-evading 
mutation [29, 30].

Many properties of an evolving virus population can be 
described by assuming that each residue in the virus’ pro-
teins evolves independently. But, if one wishes to determine 
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the mutational vulnerabilities of a virus like HIV, one needs 
to define the collective mutational pathways that HIV uses 
to evade human immune responses in order to avoid target-
ing the involved residues with a vaccine-induced immune 
response. This is because, even though such compensatory 
interactions can be relatively rare, the high mutability and 
replication rate of HIV implies that they can be sampled, 
especially when immune responses are selecting for one (or 
more) of the involved mutations. One also needs to determine 
the combinations of mutations that the virus cannot make and 
remain viable, so as to target the involved residues with vac-
cine-induced immune responses and corner the virus between 
the immune responses and evolving unfit mutant strains. In 
short, one needs to determine the fitness landscape [31, 32] 
of the virus (figure 4). Knowledge of the fitness landscape 
can be extremely useful for vaccine design. With a vaccine-
induced immune response, one wishes to target residues such 
that combinations of mutations therein correspond to a fitness 
valley. One also wishes to block the mountain passes corre-
sponding to the collective compensatory mutational pathways 
that HIV uses to go from one fitness hill to another adjacent 
one when the first one is under immune attack (figure 4). This 
practical end motivates the goal of translating sequence data 
in to knowledge of the fitness landscape of HIV proteins. The 
methods that we describe below rely on sequence information 
alone; others have attempted to infer information about HIV 
fitness by combining sequence information with data from in 
vitro experiments [33, 34], an approach with its own set of 
potential complications [35].

Simple calculations can reveal the importance 
of collective effects of multiple mutations

Given an alignment of sequences of any protein, one can com-
pute the covariance matrix that describes correlations between 
mutations. For illustrative purposes, let us imagine that the 
amino acids at each residue come in two flavors, wild type or 
most frequent (denoted by 0) and mutant (denoted by 1). Such 
a representation is reasonable when the number of types of 
amino acids observed at each residue is small. In such an Ising 

representation, if zi represents the amino acid at residue, i, the 
covariance matrix, C, is defined as

C
z z z z

VV
,ij

i j i j

i j
=

−
 (1)

where angular brackets represent an average over all sequences 
and Vi and Vj are the variances of the distribution of mutations 
at residues i and j, respectively. This covariance matrix can be 
diagonalized, and the eigenmodes are the simplest reflection 
of collective mutational pathways. We expect that such eigen-
modes can reveal functionally coupled sites. As an example, 
compensatory mutations can arise in order to restore fitness 
lost through escape mutations, and so mutations at these com-
binations of residues occur together more frequently than 
would be expected by chance.

But, the problem is complicated by at least two effects. 
First, even though we have many samples of the sequences 
of HIV proteins, it is a finite sample. Even if two variables 
are completely uncorrelated, given a finite sample, the covari-
ance matrix will exhibit spurious correlations. Second, some 
 correlations simply reflect the fact that all sequences belong to 
the same family of HIV viruses, and mutational fidelity leads 
to correlations between sequences (a phylogenetic effect).

Random matrix theory (RMT) was developed in the  context 
of nuclear physics to attempt to describe statistical properties 
of the energy eigenspectrum of complex nuclei, which could 
not be exactly determined. It has since been used profitably 
in diverse areas of physics, economics [36–38], and more 
recently, to study families of proteins across species [39], a 
single HIV polyprotein called Gag [40], and certain proteins 
of the Hepatitis C Virus [41]. Given a finite set of independent 
random variables, the covariance matrix has a distribution of 
eigenvalues that range from [42]

Q Q
, 1

1
2

1
,⩽ ⩽λ λ λ λ = + ±− + ± (2)

where λ+ is the largest eigenvalue and λ- is the smallest, and 
Q  =  M/N is the ratio of the number of samples (number of 
sequences M) to the number of variables (sequence length N). 
Dahirel et al found that the distribution of eigenmodes of the 
matrix, C, obtained from aligning sequences of Gag is con-
tinuous up to a value slightly larger than λ+ corre sponding 
to the data (M and N), followed by a discrete spectrum of 
eigenmodes. One could conclude that only the discrete eigen-
modes corresponding to eigenvalues greater than λ+ contain 
information on real collective correlations between mutations. 
But, (2) applies only in the limit of M and N tending to infin-
ity; neither condition is true for analyses of protein sequences. 
Finite size effects can be studied using a method suggested 
by Leibler, Ranganathan and co-workers [39]. Take each 
residue in the sequence alignment and randomly permute the 
amino acids at that residue across all sequences. This results 
in one realization of a random sequence alignment that pre-
serves the average amino acid composition at each residue. 
Diagonalizing the covariance matrix, C, corresponding to this 
randomized sequence alignment, and repeating this operation 
many times produces a histogram representing the distribution 

sequence

Figure 4. Schematic of a fitness landscape. The true sequence 
space is high-dimensional and discrete, but here for simplicity, 
we represent the landscape on a continuous 2D sequence space. 
Ideally, vaccine-induced immune responses could be generated that 
force escape mutations corresponding to a ‘valley’ on the fitness 
landscape, while blocking off pathways of low fitness cost between 
adjacent fitness ‘peaks’.
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of eigenvalues for randomized sequences with the same val-
ues of M and N as the real sequence alignment. The result for 
Gag is that finite size effects result in a tail of the eigenvalue 
distribution that extends a bit beyond the λ+ theoretical limit 
of 2.42 for the Gag sequence alignment; there were no eigen-
values beyond 3 for the distribution obtained from the ran-
domized sequences. Therefore, one could conclude that the 
eigenmodes corresponding to eigenvalues larger than 3 reflect 
collective correlations that are not spurious.

For bacterial proteins [39], HIV Gag [40], a key protein in 
HCV [41], and analyses of financial markets [38], one finds 
that there is a very large eigenvalue which corresponds to a 
coherent eigenmode. For the biological examples, this mode 
has been interpreted to be one that largely reflects phylogeny. 
Analogously, for analyses of correlations between stock price 
fluctuations, this eigenmode has been interpreted to be one 
that reflects overall market forces that affect the price of all 
stocks.

The matrix, C, can be decomposed in terms of its eigen-
values as

C k k ,
k

k∑λ= (3)

where k  represents the kth eigenvector. The eigenvalues 
below λ− usually have a negligible contribution, although 
they have been recently interpreted to reflect direct contacts 
in protein structures [43]. The eigenvalues between λ− and λ+ 
reflect noise, and so the matrix, C, ‘cleaned’ of noise can be 
decomposed as

C k k .
k

kclean
k

∑ λ=
λ λ> +

 (4)

In order to remove the phylogenetic contributions, one could 
simply exclude the top eigenvalue from the sum in (4). A more 
principled way has been suggested by Plerou et al [38]. For 
Gag, either approach leads to the same qualitative results [40].

With the relevant eigenmodes in hand, one can construct 
a description of the collective modes as determined by this 
simple analysis. The crudest way to do this is by graphing the 
values of the coefficients corresponding to each residue for 
pairs of eigenmodes, and then performing a visual clustering 
analysis. More sophisticated approaches are available [41]. 
Carrying out the simpler analysis, Dahirel et al identified five 
co-evolving groups of residues in Gag. Two of these groups 
were contained in the p24 protein. When these groups of res-
idues were superimposed on the structure of p24 alone, no 
reason for co-evolution was apparent. However, six p24 pro-
teins form hexamers through non-covalent interactions, and 
the hexamers form interfaces with other hexamers [44]. This 
honeycomb-like structure tiles the viral capsid. One group 
of co-evolving residues is largely involved in forming intra-
hexamer and inter-hexamer interfaces between p24 proteins. 
Another is largely made up of residues that form the core  
of the hexamer. Given the structural basis of these groups of 
residues, one can ask whether multiple mutations at these  
co-evolving residues are likely to be deleterious or  compensatory 
by examining the proportion of negative to positive correla-
tions between pairs of residues within a group as well as the 

larger scale correlations (e.g. embodied as positive and nega-
tive lobes on certain eigenvector projections). Based on these 
considerations, Dahirel et al concluded that these two groups 
were more likely to be vulnerable to multiple simultaneous 
mutations than others. Structurally, this could be rationalized 
by surmising that multiple mutations at co-evolving residues 
that formed key protein-protein interfaces critical to capsid 
assembly may cause the capsid to become unstable. Thus, 
simultaneously targeting such residues with a T cell response 
might be effective as immune evasive mutations would be 
likely to be deleterious.

Clinical data seems to support this surmise. Some patients, 
called elite controllers, do not progress to AIDS because their 
immune systems can maintain low levels of HIV without any 
therapy [45]. The T cell responses in these patients seem to 
disproportionately target the two groups of residues deemed 
to be vulnerable to multiple simultaneous mutations by the 
analysis noted above. The analyses outlined above also pre-
dicted that, while both groups of co-evolving residues are 
equally resistant to single mutations, one group was more 
vulnerable to multiple simultaneous mutations than the other. 
Sequencing of virus samples extracted from elite controllers 
seem to support this prediction as the frequency of observed 
single mutations in residues in these groups are roughly the 
same, but multiple mutations are more restricted in one group 
of residues as predicted [40].

The type of analysis outlined above, which resembles prin-
cipal component analysis with the eigenspectrum cleaned of 
noise, can be helpful in identifying some collective correla-
tions. However, it does not provide a quantitative metric that 
differentiates relative fitness costs incurred by the virus by 
making one set of combinations of mutations versus another. 
The absence of a metric of relative fitness also does not allow 
for the calculation of evolutionary dynamics in response 
to different immune pressures to establish which types of 
immune responses will be able to keep the virus cornered for 
the longest times before escape can occur. These are the types 
of immune responses that one would wish to induce by vac-
cination. The inability to make predictions like the ones noted 
above also makes it difficult to test predictions against a wide 
range of in vitro and clinical data.

Another important point is that the virus samples used to 
carry out the analysis are derived from patients in whom a host-
pathogen battle had ensued forcing certain mutations that evade 
the immune response. The analysis noted above does not allow 
for a principled way to analyze and deconvolve the effects of 
the immune response on the correlations between mutations.

Inference of prevalence and fitness landscapes

One can begin by seeking to construct a model for the 
prevalence landscape, or the probability P(z) of observ-
ing a sequence, z, of an HIV protein in the circulating virus 
population [46]. The sequence data contains information on 
the probability of observing single mutations at every resi-
due of a protein, double mutations at every pair of residues, 
triple mutations at every triplet of residues, etc. Any math-
ematical model for P(z) that can recapitulate these mutational 
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correlation functions can be said to accurately describe the 
prevalence landscape. One way to approach this inference 
problem is to ask: what is the least biased model for P(z) 
that recovers the one- and two-point mutational correlations 
observed in the available sequence data. Exploiting the con-
nection between statistical mechanics and information theory, 
one may interpret ‘least biased’ to mean the probability dis-
tribution P(z) which has the maximum entropy subject to 
these constraints on the correlations [47]. A similar approach 
has been used to infer contacts in protein structures [48, 49], 
correlations between the firing of neurons [50], etc. Related 
methods have also been employed to study structural proper-
ties of HIV protease [51] and inter-protein interactions [52].

We seek to maximize the entropy of P(z), subject to the 
constraints that the probability distribution is normalized and 
that the one- and two-point mutational correlations predicted 
by the model are those that match the observed correlations. 
For most HIV proteins, we use a Potts model to represent 
the amino acids at each residue (see details later). For ease 
of illustration, we use an Ising representation to simplify the 
formulas noted below. In this Ising representation, the residue 
at site i in a given sequence corresponds to zi  =  0 if it is the 
wild type amino acid and zi  =  1 otherwise. With this simpli-
fied notation, the quantity we wish to maximize is

P z P z P z h p z P z

J p z z P z

log 1

,

z z i
i i

z
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i j
ij ij
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where the constraints are enforced through the Lagrange mul-
tipliers α, hi, and Jij. Here pi and pij represent the observed 
one- and two-point mutational correlations, respectively. 
Maximizing this functional yields

P z
Z

H z h z J z z
e

, ,
H z

i
i i

i j
ij i j( ) ( )

( )
∑ ∑= = − −

−

<
 (6)

where the fields hi and couplings Jij are those that constrain the 
one- and two-point correlation functions to be the observed 
ones. The partition function Z ensures that the probability 
distribution is properly normalized. The couplings Jij can 
have both positive and negative signs and so there are some 
analogies between the form of the Hamiltonian in (6) and the 
Hopfield model of neural networks [53] which can be profit-
ably exploited [54].

Another way to see that the fields and couplings should 
be those that fit the observed one- and two-point correla-
tion functions is to note that, once we choose the form of the 
Hamiltonian to be as in (6), the average log-likelihood of the 
observed sequence data is
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where B is the number of sequences in the data, and z(k) repre-
sents the kth sequence. Maximizing this function with respect 
to the parameters (the fields and the couplings) yields
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noting here that pi  =  Σk zi
k( )/B, pij  =  Σk zi

k( )) z j
k( )/B. That is, the 

parameters that maximize the likelihood of the data are also 
ones that fit the observed one- and two-point mutational cor-
relation functions.

Inferring the fields and couplings that maximize the like-
lihood is referred to as the inverse Ising (or Potts) problem. 
This problem is challenging to approach directly through 
traditional optimization methods because of the difficulty of 
evaluating the likelihood function. The likelihood depends 
on the partition function, which contains a number of terms 
that grow exponentially with the system size N. It cannot 
be computed directly except for very small systems. As a 
result, a number of inference schemes have been devel-
oped to provide approximate solutions to the inverse Ising 
problem.

The simplest approach to the inverse Ising problem is based 
on iterative Monte Carlo simulations [55]. Given a starting 
value for the model parameters, one can estimate the gradi-
ent of the likelihood (8) by computing the correlations from 
Monte Carlo simulation and comparing them to the ones from 
the data. Iteratively updating the model parameters based on 
the difference between the true and simulated correlations 
yields models that do progressively better at reproducing the 
data. The drawback of this approach is that it tends to be slow, 
as Monte Carlo simulation can be particularly costly for large 
systems.

Alternative methods replace the intractable likelihood (7) 
with one that is easier to evaluate. One such example is the 
Gaussian approximation: note that, if the spin variables zi were 
real-valued rather than binary, the coupling values Jij would be 
given simply by the entries of the inverse of the sample covari-
ance matrix. Similar expressions can also be obtained from a 
systematic expansion assuming weak couplings [56, 57], and 
this approach has been fruitfully applied to study the structural 
properties of protein families [58]. Pseudolikelihood methods 
replace the full expression in (7) with an array of likelihood 
expressions, one for each variable, which are maximized in 
parallel. Here other spin variables are treated as quenched 
random variables, simplifying the inference problem [59, 60]. 
While these sorts of approaches are much faster than iterative 
Monte Carlo learning, they do not always yield a model that 
accurately reproduces the data [61, 62].

In recent work, the adaptive cluster expansion (ACE) 
method for inverse Ising inference [62–64] has been applied 
to infer the HIV prevalence landscape. In this approach, one 
maximizes the likelihood exactly, but only on small subsets 
(or clusters) of spins at a time. An approximation for the set of 
couplings and fields for the entire system can then be built up 
from the parameter values inferred on these smaller clusters. 
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The success of this approach relies on the ability to accurately 
estimate the model parameters using only a subset of the cor-
relation data (i.e. that the inverse covariance matrix (dp/dJ)−1 
is sparse). ACE is typically slower than approximate methods 
such as the Gaussian and pseudolikelihood approximations, 
but it consistently yields models that accurately reproduce the 
original data [62]. Efforts to improve the speed and accuracy 
of this and other methods of inverse Ising inference remain an 
active topic of current research.

Connection between prevalence and fitness  
of HIV strains

The model that we infer by following the procedure above 
describes the prevalence of circulating strains of HIV. One can 
argue that the more prevalent strains are also the ones that are 
intrinsically more fit, but this can be proven to be true only 
in some circumstances [65–67]. In the case of a real human 
pathogen, such as HIV, the sequences of strains that are used 
to infer the model are derived from patients whose immune 
systems have battled the virus. Thus, the virus sequences in 
individual patients are likely to bear the imprint of the host-
pathogen riposte; mutations that make the virus intrinsically 
less fit may allow the virus to evade the immune response, 
thus making a strain bearing these mutations effectively more 
fit and prevalent in a particular host. How does the host- 
pathogen riposte affect the relationship between the preva-
lence and intrinsic viral fitness? To explore this question, a 
number of efforts have been undertaken recently for both HIV 
and influenza. We will focus here on HIV, but will note the 
contrast with influenza.

Shekhar et  al carried out computer simulations with a 
coarse-grained model that aimed to mimic the way in which 
the virus samples were collected [68]. An in silico person is 
infected with N copies of a virus, and a host-pathogen battle 
ensues (see below for details). At a randomly chosen time, 
one of the viruses from this in silico person is transmitted to 
another host, and the infection begins anew with N copies 
of the transmitted virus strain. HIV proteins are subjected to 
T cell responses which target peptides bound to MHC mol-
ecules. Because the newly infected person is likely to have 
a different MHC genotype and antibody responses also vary 
across hosts, in our calculations the virus evolves in response 
to a different host immune response. At a randomly chosen 
time, a virus sample from this person infects another new host, 
and this process is continued. At separate randomly chosen 
times, a virus sample from the current population within each 
host is recorded, and these samples can be thought to repre-
sent a sequence database.

Within each person, the fitness of the virus is modulated by 
the immune response. In our representation, we assume that 
there is a Hamiltonian that reflects the intrinsic fitness of the 
virus, and that the immune response, which acts on particular 
residues of viral proteins, can be modeled as external fields 
that act at a few points to promote mutations. Again, for sim-
plicity, in an Ising representation, the effective Hamiltonian 
(or fitness) can be written as

H z h z J z z b z .
i

N

i i
i

N

j i

N

ij i j
i

k

s seff
1 1

1

1 1
i i( ) ∑ ∑ ∑ ∑= − − +

= =

−

= + =
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The fields, bi, act on residues in a peptide that is being pre-
sented by an individual with particular MHC molecules. So, 
there are short-range correlations between the locations at 
which these fields act. For simplicity, Shekhar et al ignored 
these correlations. Here we use si to denote the (set of) tar-
geted sites and to emphasize that they may not be contiguous. 
The number and location of the residues at which immune 
pressure is applied in each individual comes from a statistical 
distribution, whose choice was guided by clinical data. Human 
T cell responses are extraordinarily diverse [69] because of 
the enormous diversity of MHC genes in the population [4]. 
Thus the same epitopes are not consistently targeted among 
different hosts. For example, of the 363 residues in the immu-
nogenic structural proteins, p17 and p24, only 46 are targeted 
by more than 10% of humans, none by more than 23%, and 
146 residues are not targeted at all [40]. Thus, Shekhar et al 
considered the number of targeted sites, k, within each host to 
be chosen randomly between 0 and nmax (=6). Their locations 
were selected from a uniform distribution across the entire 
protein, mimicking the high diversity of targeted epitopes. At 
each targeted site the value of the field bi was chosen from a 
Gaussian distribution, whose mean and variance are the same 
as for the inferred hi. For all other sites bi is zero.

Viral dynamics within each host can be simulated using 
a model similar in spirit to Wright–Fisher models in evo-
lutionary biology. An attempt is made to mutate each residue 
in proteins in each viral strain in an individual with a certain 
probability per site (e.g. that of HIV). The new viral strains 
thus produced survive with a probability equal to

P z
H z

1
1 exp

,surv
eff

( )
( ( ))

=
+ − (10)

where the consensus sequence is assumed to have the best fit-
ness. The number of viruses is then scaled back to a total of 
N strains, and the calculation is repeated. The assumption of 
constant population size may be appropriate as it is expected 
that most samples of viruses were drawn from patients who 
were in the chronic stage of infection when viral load does not 
fluctuate much. Moreover, several studies have shown that, 
for large enough population sizes, Wright–Fisher like dynam-
ics asymptotically approach results of calculations that do not 
impose constant population size. Shekhar et al studied popu-
lation sizes that ranged from 2  ×  103–5  ×  105.

Shekhar et  al assumed that the Hamiltonian representing 
the intrinsic fitness of the virus (represented by a single HIV 
protein, p17) is that inferred from the prevalence of circulat-
ing strains for a particular HIV protein, and obtained a set of 
sequences of this protein derived from the in silico patients after 
the host-pathogen riposte. They calculated the mutational corre-
lation functions from this set of sequences and compared them 
to those corresponding to the sequences derived from the real 
patients (those used to infer the prevalence landscape). They rea-
soned that if these mutational correlations were the same, then 
the prevalence landscape is the same as the fitness landscape. 
This is because the assumed intrinsic fitness landscape is the 
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prevalence landscape which, by construction, fits the mutational 
correlation functions observed in the actual sequence database. 
So, if the sequences obtained from the in silico patients (post 
host-pathogen riposte) exhibited the same mutational correla-
tions, the prevalence landscape inferred from these sequences 
would be statistically the same as the assumed intrinsic fitness 
landscape. The two sets of mutational correlation functions 
are not the same, but are statistically monotonically correlated 
[68]. If the Hamiltonian in (9) was of the ferromagnetic form, 
Griffiths theorem [70] would lead to the conclusion that the 
fields and coupling constants are also monotonically correlated. 
Thus, the fitness and prevalence landscapes would be related 
by a simple shift. However, the Hamiltonian is not of this form, 
and for a spin glass or Hopfield-like Hamiltonian, an analog of 
Griffiths theorem does not exist.

Eigen’s deterministic equation  for viral evolution [71] in 
the limit of a large number of viral strains is reproduced below

x
t

r x W x W x x r x
d
d

.i
i i

k i
ki i

k i
ik k i

k
k k∑ ∑ ∑= − + −

≠ ≠
 (11)

Here, xi is the frequency of strain i, Wki is the rate of  mutation 
from strain i to k, and ri is the replication rate of strain i. 
Leuthäusser showed that this equation  describing a non- 
equilibrium process is isomorphic with the equilibrium statis-
tical mechanics of a 2D Ising model [72]. Each row zα of this 
Ising model corresponds to a particular strain, and the next row 
zα+1 is its progeny. Each configuration of this Ising model is a 
particular evolutionary trajectory, analogous to a path integral 
formulation. Following developments by Leuthäusser adapted 
to our problem, the weight of each evolutionary  trajectory Σ 
is given by the Hamiltonian

H J z z H z1 2 1 2 .
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The in-row couplings are the intrinsic fitness of a viral strain 
modulated by the immune response, and the nearest-neighbor 
ferromagnetic coupling Jµ across rows reflects mutational 
fidelity originating from the fact that the mutation rate is less 
than half. A Hamiltonian formulation enables exploitation of 
the machinery of statistical physics. For example, Shekhar 
et al asked: if one inferred the optimal quadratic Hamiltonian 
(such as the one that is inferred for the prevalence), how would 
it correlate with the intrinsic fitness landscape? The quadratic 
Hamiltonian is of the form

H a z K z z ,
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where Kij and ai are the couplings and fields, respectively. So, 
the question above is tantamount to answering what is the fit-
ness order predicted by using (13) with the optimal values of 
Kij and ai, and that resulting from Jij and hi?

To answer this question, Shekhar et  al used Feynman’s 
variational theory to estimate the optimal values of Kij and ai 
for the p17 protein of HIV, such that (13) is as close as pos-
sible to (12). They found that, with high statistical accuracy, 
the fitness and prevalence of circulating strains appear to be 
monotonically correlated.

The above analysis suggests that while human immunity 
is an important driver of HIV evolution, its overall effect on 
prevalence is perturbative and therefore does not significantly 
compromise the connection between prevalence and fitness. 
The principal biological reasons that underlie this result are 
as follows. HIV is a chronic infection and is subject to T cell 
responses. As we have argued above, human T cell responses 
are extraordinarily diverse [69] because of the enormous 
diversity of HLA genes in the population, and so most regions 
of the viral proteome are targeted by a small fraction of peo-
ple. Thus the same epitopes are not consistently targeted 
among different hosts. Furthermore, deleterious escape muta-
tions can revert when the virus is transmitted to a new host 
[73]. Importantly, although a few HLA-epitope combinations 
have been associated with better outcome in infected persons 
[24], the circulating HIV population has not been persistently 
subjected to classes of effective natural or vaccine-induced 
memory immune responses. In contrast, the evolution of 
families of influenza has been strongly directed by persistent 
and effective natural and vaccine-induced immune responses. 
Thus, unlike influenza [11, 28], at the population level, HIV 
evolution is not narrowly directed and strongly biased over 
time due to persistent effective human immune responses. 
For these reasons, the prevalence of strains in the HIV 
 population is related simply to intrinsic fitness. Using very 
different  methods than our own, recent work has also shown 
that  patterns of HIV diversity over long times are mirrored 
across different infected individuals, supporting the claim that 
universal information about HIV fitness can be derived from 
prevalence data [74].

Of course, in individual hosts the virus evolves to evade 
host immunity, forcing HIV to adapt and explore the sequence 
space. If a mutation that evades host immunity comes at a sub-
stantial fitness cost to the virus, compensatory mutations often 
arise to restore lost fitness, and so mutations at these combina-
tions of residues are observed more frequently than by chance 
in the circulating virus population. Similarly, some combina-
tions of mutations that are especially deleterious for the virus 
are observed less frequently than by chance. These  correlations, 
which reflect intrinsic viral fitness effects observed because 
of the host-pathogen riposte, are the key inputs to our infer-
ence procedure. Thus, our landscape describes the collective 
mutational pathways that HIV uses to evade host immunity 
and those that it does not. Because of the great diversity of 
HLA genes, that more than one HLA can target the same HIV 
epitope, more than one type of HLA  molecule is present in 
each human, and recombination, specific sets of collective 
mutational correlations observed at the population level, which 
inform our inference procedure, cannot be uniquely assigned 
to individual HLA molecules alone [54].

Recent work has correlated clinical markers such as viral 
load and rate of CD4+ T cell decline with a measure of HIV 
adaptation to different HLAs [75]. The degree of adaptation as 
defined therein depends upon the relative frequency of muta-
tions in HIV sequences isolated from individuals with differ-
ent HLA genes, quantified in terms of a Potts-like model (but 
one without coupling parameters). Sequences that carry more 
and stronger HLA-associated mutations [76] are considered 
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to be more adapted to that HLA. These findings are consist-
ent with our expectations that mutations in more conserved 
regions, where the difference between the frequency of muta-
tions with and without particular HLAs can be maximized, 
tend to be deleterious for the virus unless compensated for 
by other mutations. This also shows that immune responses 
mediated by a particular HLA are likely to be less effective at 
controlling infection if pre-adapted escape and compensatory 
mutations are already present in conserved, immunodomi-
nantly targeted HIV epitopes.

The relationship between intrinsic fitness and preva-
lence can be complicated if one compares fitness differences 
between strains that differ by many mutations. This is because 
even if two such strains are reasonably close in fitness, it 
would be more difficult to access the strain that is more muta-
tions away from the closest common ancestor. Thus, it would 
be less prevalent, and our inference method would incorrectly 
predict it to be less fit. Indeed, the simple variational theory 
reported in Shekhar et al related hi and ai as follows:

a h b J z2 1 2 .i i i i( )= − + −α α
µ

α (14)

The superscripts refer to rows in the 2D Ising mapping of 
Eigen’s equation, as described above. Here the immune pres-
sure bi makes a particular residue appear more mutable than 
intrinsic fitness would indicate. The third term reflects muta-
tional fidelity and its size grows with the number of mutations 
separating two strains. For the influence of this term to be 
small, one needs to compare strains that are separated by only 
a few mutations for the simple monotonic relationship between 
prevalence and fitness to hold. However, it is worth noting 
that the properties of the HIV reverse transcriptase enzyme 
enable substantial amounts of recombination [74, 77, 78]  
and a high mutation rate [18], promoting wide exploration of 
sequence space and attenuating the effects of phylogeny.

The arguments made above imply that, within some muta-
tional distance, HIV strains have reached a quasi-steady state 
and that the effects of immune responses are perturbative. 
Therefore, the relationship between prevalence and fitness 
differences between strains that differ by a modest number of 
mutations is simple. Notice that this is not true for influenza, 
which is driven very far away from equilibrium by persis-
tent effective memory immune responses [28]. In the future, 
it may be useful to make these arguments more precise by 
examining Fokker–Planck equations corresponding to viruses 
mimicking the biological and evolutionary history differences 
between HIV and influenza. Such analyses may also reveal 
the range of conditions over which the fitness and prevalence 
landscapes of a virus are expected to be simply related (‘HIV-
like’), and how as parameters describing the virus and the 
immune system change one interpolates between flu-like and 
HIV-like viruses.

Tests against in vitro experiments and clinical data

The extent to which the approximate calculations and biologi-
cal arguments noted above are valid can only be determined by 
comparing predictions with in vitro experiments and clinical 

data. Consider in vitro experiments first. For example, one 
could make predictions for the ‘energy’ corresponding to par-
ticular mutant sequences relative to a reference sequence. The 
model would predict that the replicative fitness of the mutant 
strain relative to that of the reference sequence should scale 
negatively with the energy difference between the mutant 
strain and the reference sequence (equation (6)). The mutant 
sequences for which predictions are made can be generated 
through site-directed mutagenesis, and then their relative fit-
ness can be measured by assaying their growth rates when 
placed in culture with human cells that HIV can infect. Notice 
that such experiments are carried out in the absence of immune 
pressure, and so reflect the intrinsic fitness of mutant strains. 
Figure 5 shows such a comparison between experiments and 
model predictions for 38 strains of HIV with mutations in the 
Gag polyprotein [46, 79]. As is evident, the comparison is rea-
sonably good. In published and unpublished work, we also see 
robust correlations with similar data for HIV strains bearing 
mutations in the Nef, Pol, and ENV proteins.

Another study highlights the ability of the fitness model 
to capture the effects of interactions between mutations 
[80]. HIV protease plays an important role in viral replica-
tion because this molecule cuts up the polyproteins for which 
the HIV genes code into the individual proteins required for 
proper replication and the virus’ function. Thus, it has been 
the target of antiretroviral drug therapy through a class of 
drugs known as protease inhibitors. The virus is able to make 
mutations that increase its resistance to protease inhibitors, 
but these typically come at substantial fitness costs to the 
virus. The drug resistance mutations that are most likely to be 
relevant, then, should be the ones whose fitness costs can be 
compensated by other mutations. One may then ask whether 
our fitness model can identify potential drug resistance muta-
tions based on the values of the coupling constants in the 
Hamiltonian. Specifically, when the positive coupling con-
stants exceed a certain value (here the sign of the interaction 
is important because it should have a compensatory effect), 
the strain bearing both the mutation that confers drug resist-
ance and an additional mutation becomes sufficiently fit. This 

Figure 5. Comparison between experimental measurements of 
viral growth, shown relative to the growth rate of the wild-type 
sequence (relative fitness), versus the corresponding difference in 
energy between the mutant and wild-type sequences. We observe a 
strong negative correlation between energy and replicative fitness 
in vitro (Pearson’s r  =  −0.78, p  =  8.2  ×  10−9, n  =  36). Analysis of 
experimental data from [79].
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condition Jij  =  −hi  −  hj, can be thought of as a level-crossing 
phenomenon in statistical mechanics.

It could be argued, however, that predictions emerging from 
the model could be good simply because the model reflects 
the presence of drug-resistance mutations in the population 
of circulating viruses today. Therefore, we inferred a model 
for protease only using sequences that were obtained prior 
to 1996 (the year that antiretroviral therapy was introduced). 
Model predictions compare increasingly well with observed 
drug-resistance mutations as the cut-off value for the coupling 
constants increases [80]. These results again suggest that the 
model can capture effects of coupling between mutations that 
reflect the virus’ intrinsic fitness.

In addition to the tests of predictions with clinical data on 
elite controllers noted earlier, more recently, predictions from 
the fitness model have been confronted with data on virus evo-
lution in individual patients. In these patients, viral sequences 
have been obtained as a function of time, and the first detect-
able T cell responses and their targets are also known [81]. In 
these patients the virus makes mutations to evade these T cell 
responses. Is it possible to predict the residues at which these 
escape mutations emerged, and the relative times required for 
this to happen in these patients? Toward this end, Barton et al 
combined Wright–Fisher like evolutionary dynamics with the 
model for fitness landscapes to try to predict the evolution 
of a real pathogen under immune pressure in humans [82]. 
As in the simulations of Shekhar et al described above, these 
simulations involved virus populations of constant population 
size. Here, however, the logistic map from energy to survival 
probability,

P z
H z H

H H z
1

1 exp
, ,

z
surv( )

( ( ( ) ))
( )∑β

=
+ −
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was further refined by including an ‘inverse temperature’ 
parameter β  ≈  0.07, computed from comparisons between 
energy values and in vitro replicative capacity measure-
ments [79]. Note that the sum in (15) runs only over the set 
of sequences in the current viral population. Because the true 
T cell responses were measured experimentally, it was also 
possible to include the effects of each individual’s immune 
system in the model. To mimic the killing of infected cells by 
epitope-specific T cells, all viruses that contained a targeted 
epitope had their energy increased (i.e. fitness decreased) 
by a fixed amount, chosen large enough so that escape was 
favored for all epitopes observed in the clinical data. Barton 
et al then conservatively assumed that any nonsynonymous 
mutation within a targeted epitope would be sufficient to 
allow the virus to avoid detection by epitope-specific T cells. 
Though this assumption is not always correct, there is exper-
imental evidence that most mutations within an epitope tend 
to substantially impair T cell recognition [83]. Overall, the 
effect of these assumptions appears to be mild as model pre-
dictions for the most likely and second most likely locations 
for escape mutations matched the clinical data in roughly 
85% of the cases.

Interestingly, some of the patients studied provided illus-
trations of the importance of the effects of coupling between 

mutations. This is most vivid when examining pairs of 
patients who target the same epitope (peptide). Figure 6 shows 
an example of two such patients. In one individual, the virus 
escaped T cell immunity fairly quickly, while in the other 
escape mutations were never observed at high frequency, even 
after years of infection. The circles in this figure show the rest 
of the sequence of the protein containing the targeted peptide. 
Marked residues represent ones that had a mutant amino acid 
(compared to the reference sequence for the fitness model) 
that strongly interacts with the ultimate escape mutation. Blue 
curves represent that the mutation was predicted to be syner-
gistically (J  >  0) coupled to the escape mutation, and orange 
curves imply a predicted antagonistic (J  <  0) interaction. The 
thickness of the curves corresponds to the strength of these 
couplings. The patient in whom escape is suppressed was 
infected with a virus that contained many more mutations at 
residues that were strongly negatively coupled with the escape 
mutation compared to the patient in whom the virus escaped 
quickly. Cases like this suggest that couplings between muta-
tions can play a key role in determining the evolution of HIV 
in individual patients.

In the evolutionary dynamics that we carry out, the steps 
of replication, mutation, and selection occur in a single step. 
However, biologically these steps are separate and involve dif-
ferent time scales. Mutation occurs rapidly during the reverse 
transcription of the viral RNA into DNA, while selection 
effectively operates at the level of infected cells (which may 
or may not successfully produce new viruses, and which may 

Figure 6. Comparison of identical epitopes targeted by two 
different individuals reveals effects of the viral sequence 
background on escape [82]. (a) In one individual, escape occurred 
through the mutation 182G fairly rapidly (120 d). (b) In another, 
strong negative interactions between the 182G mutation and 
residues of the viral sequence background in this particular 
individual suppress escape, which is not observed to occur even 
after years of monitoring (>1103 d). (c) Overall, we find good 
correlation between times to escape in simulation and those found 
in clinical data (Pearson’s r  =  0.81, p  =  3  ×  10−13, n  =  53). 
Analysis of clinical data from [81].
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be killed during the replication process by cytotoxic T cells); 
a typical lifetime of infected cells is around 2 d when pro-
ductively infected [20]. Also, our simulations operate in the 
regime of very strong selection for escape, so that escape is 
favored even at epitopes where the fitness cost of mutation 
is high. For these reasons, it is difficult to precisely connect 
generations of evolution in the simulations of virus evo lution 
to real time. Thus, the predicted generations of evolution 
required for escape mutations to emerge reflect relative rates. 
Figure 6(c) shows that the clinically measured escape times 
compare reasonably well with the predicted evolutionary gen-
erations. However, there is considerable scatter, especially for 
cases where escape is neither very fast or slow; but, adding 
error bars to the calculated results shows that the rough order 
is correctly predicted by the simulations. An important ques-
tion for future exploration is to determine the extent to which 
the discrepancies between clinical data and predictions can be 
ascribed to different approximations made in the simulations 
of evolutionary dynamics or the errors in statistical inference 
of the fitness landscape. For example, is the comparison with 
data better if we do not make the approximation of constant 
population size, or do not encapsulate mutation/replication 
and selection in one effective time step (by treating infection 
of new cells as a separate step)?

Based on the progress made so far and on positive cor-
relations between predictions and data, we have designed an 
immunogen that can be tested in monkeys in the context of 
a therapeutic vaccine. A major engineering challenge here 
is devising carriers and adjuvants that can efficiently deliver 
long peptide immunogens, an issue that also confronts the 
development of cancer vaccines.

Evolution driven by potentially conflicting selection 
forces: guiding the choice of strategies for inducing 
broadly neutralizing antibodies

As noted earlier, an effective prophylactic vaccine against 
highly mutable pathogens, such as influenza and HIV, would 
be one that stimulates the immune system to produce anti-
bodies that can neutralize diverse strains (broadly neutralizing 
antibodies or bnAbs). Recently, such bnAbs have been iso-
lated from some patients [84–87]. In the case of HIV, bnAbs 
typically only emerge several years after infection, if they are 
observed at all. Nonetheless, their existence shows that the 
human immune system can evolve bnAbs. This finding thus 
raises the tantalizing possibility that, by properly tuning the 
vaccination strategy, bnAbs could be induced rapidly and effi-
ciently in many people.

As we described, upon natural infection or vaccination, 
bnAbs are produced by the Darwinian evolutionary process 
of affinity maturation (AM). It seems evident that one would 
have to vaccinate with multiple variants of the molecules com-
prising the viral spike of a pathogen in order to induce bnAbs. 
Otherwise, the Darwinian evolutionary process of AM should 
produce strain-specific antibodies.

If multiple variants are used in the vaccine, several new 
questions need to be addressed. First, what should be the 

variant pathogens? The part of the viral spike to which bnAbs 
bind contain residues that are conserved from one strain to 
another. One example is the CD4 binding site on the spikes 
of HIV, which is highly conserved because this region must 
bind to CD4 on human cells in order to enter and infect them. 
As shown in figure 3, the CD4 binding site is surrounded by 
highly variable residues and the spike is also decorated with 
sugars (glycans) that act like a protective shield that hinders 
antibody access to the conserved protein residues [88, 89]. 
The variant antigens that are used to induce bnAbs should 
share a set of conserved residues, and have different variable 
regions around these residues. The antigens must also mimic 
the steric constraints present on the actual viral spike. Much 
work is being done to design such antigens for both influenza 
and HIV. Much work is also underway to devise immunogens 
that can activate germline B cells that target regions contain-
ing conserved residues and have a chance of maturing into 
bnAbs [90–92]. We will not be concerned with these issues 
here.

Our focus here will be on the effects of the temporal order 
and concentrations of the variant antigens on the probability 
of inducing bnAbs, provided that the right germline B cells 
can be activated [92–94]. For example, should the variant anti-
gens be administered as a cocktail, sequentially, or first one 
variant and then a cocktail? How does the concentration of 
antigen that is delivered influence AM when there are multiple 
variant antigens present? How many variant antigens should 
be used, and what should be the mutational distances that sep-
arate their variable regions? The answers to these questions 
are drawn from a large space of possibilities, and the avail-
ability of mechanistic principles that describe how AM occurs 
could guide promising choices to be explored for induction 
of bnAbs.

AM has been studied extensively ever since Eisen’s semi-
nal experiments describing the phenomenon. It is also the 
most studied problem in immunology using computation, 
following the seminal studies by Perelson and co-workers 
[9,  95–102]. But, most studies focused on AM induced by 
single model antigens. Thus, little is known about a basic 
problem in immunology—viz., how do antibodies evolve by 
affinity maturation when there are multiple variant antigens 
that share a common set of residues? Shedding light on this 
fundamental issue will also help address an important chal-
lenge to human health.

There have been a few recent studies of this problem using 
computation [103–106]; very little has been done using theory 
and simple analytical models with the goal of obtaining deep 
mechanistic insights.

Recently, Wang et  al developed a coarse-grained com-
putational model for AM in the presence of multiple vari-
ant antigens [103]. This agent-based stochastic simulation 
method executes a set of rules derived from experimental 
studies with a single model antigen (see earlier description 
of AM). However, calculations were carried out using dif-
ferent variant antigens. B cells multiply and mutations are 
introduced in to a coarse grained model of the receptor 
with a probability determined from experiments. Half the 
mutated B cells die because experiments suggest that this 
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is the probability that a mutation is lethal, another third of 
mutations are silent (do not affect affinity for the antigen), 
and the rest are affinity-affecting mutations. Based on exper-
imental results, affinity-affecting mutations are more likely 
to be deleterious rather than beneficial. A coarse-grained 
Ising-like model is used to mimic the variant antigens and 
the BCR in order to compute affinities. Mutated B cells then 
undergo selection in two steps. Each B cell is successful in 
internalizing the antigen it encounters with a probability 
that grows with its BCR’s affinity for this antigen and then 
saturates (Langmuir form). B cells that succeed in internal-
izing  antigen then compete with each other for limiting T 
cell help, and receive a survival signal with a probability 
that is determined by the relative value of its affinity for the 
encountered antigen compared to the average value of the 
affinity for all B cells that internalized antigen. Most B cells 
that are positively selected are recycled for further rounds of 
mutation and selection [7, 9], and a few emerge from the GC 
as antibody producing cells and memory cells. The simula-
tions of the GC processes end when all B cells in the GC 
die, when a threshold number of B cells is reached, or when 
a maximum time has elapsed. The second condition mimics 
the internalization of all the antigens by B cells, and the last 
may reflect antigen decay. When multiple variant antigens 
are simultaneously present, the simulations studied two sce-
narios: (a) Each B cell encounters only one type of variant 
antigen at a time on FDCs; (b) Each B cell interacts with all 
types of variant antigens simultaneously.

The simulations studied the situation where the variant 
antigens shared a set of conserved residues, but were distin-
guished from each other by a relatively large mutational dis-
tance in the variable residues around it (11 non-overlapping 
mutations). Known bnAbs against HIV focus their binding 
on the conserved residues [87]. The coarse-grained Ising-like 
model for the binding free energies allows three types of con-
tacts of the BCR with the antigen—with conserved residues, 
with the variable residues, and the glycans. Another feature 
included in the free energy function is that if a mutation results 
in a weaker interaction with either a glycan or a mutated varia-
ble residue, the interaction with a randomly chosen conserved 
residue is increased. The opposite is also true. This feature 
aims to mimic the fact that mutations in the variable residues 
can insert loops that hinder access to the conserved residues, 
much like the glycans do.

Stochastic trajectories of the agent-based model for GC 
reactions are simulated and the affinity of each antibody pre-
sent in the end for a large set of variant antigens is determined. 
The ‘breadth’ of coverage is defined as the fraction of these 
antigens to which this antibody binds with an affinity exceed-
ing a threshold. When experimentalists measure breadth, they 
determine the ability of an antibody to prevent infection in a 
culture containing viruses and cells that can be infected. The 
relationship between this ability to ‘neutralize’ a virus and the 
affinity of the antibody to bind to it is complex. So, in the study 
by Wang et al, they were really studying how cross-reactivity 
depends upon the immunization scheme. In this study, trajec-
tories representing GC dynamics are simulated many times 
for exactly the same conditions, and histograms representing 

the probability with which a typical vaccinated person will 
produce antibodies with a certain breadth are reported.

Wang et al predict that, if the variant antigens are adminis-
tered as a cocktail, the probability of obtaining bnAbs is small 
and very few antibodies are produced. During the early stages 
of AM, the affinity for the antigen is not high, and so strong 
interactions with the conserved residues have not evolved. If 
a B cell is positively selected by a specific variant antigen in 
one round of AM, then mutates its BCR, and goes back for 
selection and encounters a different variant antigen, the likeli-
hood of it binding sufficiently strongly is small. Therefore, 
apoptosis is the most likely outcome (figure 7(a)). Thus, the 
studies revealed that the variant antigens represent potentially 
conflicting selection forces during the evolutionary process, 
thus frustrating AM. If one immunizes first with one variant 
antigen followed by a cocktail of the others, bnAbs do emerge 
with low probability. This is because AM induced by the first 
antigen can lead to strong contacts with the conserved residues 
for some B cells, and this alleviates some of the frustration 
described above. Wang et al reported that sequential adminis-
tration of the variant antigens results in the highest probability 
of evolving bnAbs as the conflicting selection forces repre-
sented by the three variants are temporally separated. The 
basic reason for this result is shown in figure 7(b), where the 
evolution of the footprint of the antibodies on the antigen is 
depicted. The first round of AM results in a broad footprint on 
both the conserved and variable residues of the administered 
variant antigen. When the second variant is introduced, the 
simulations suggested that roughly two types of lineages of 
antibodies tend to evolve: (1) Those that strengthen contacts 
with the conserved residues and not with the newly mutated 
variable sites or the other ones. (2) Those that evolved stronger 
contacts with the variable residues that were not mutated in 
the second antigenic variant. The latter types of lineages have 
a low probability of survival when the third variant with non-
overlapping mutations (compared to the first two variants) is 
administered. The former types of lineages can continue to 
strengthen interactions with the conserved residues and thus 
acquire large breadth. Model experiments with mice show 
that, consistent with these predictions, cross-reactive antibod-
ies are more likely to emerge upon sequential immunization 
with variant antigens rather than with a cocktail of the same. 
Wang et al also show that the degree of frustration could be 
tuned by manipulating the concentration of the antigens.

Note that Wang et  al assumed that each B cell has only 
one shot at being selected. In reality, each B cell has a refrac-
tory time between attempts to be selected, but in the time a 
B cell spends in the light zone (where selection occurs), a B 
cell can make a few attempts to selection. So, in principle, the 
B cell could see the same variant antigen again with a higher 
probability than that considered by Wang et al. However, this 
alleviation of frustration would increase the likelihood of pro-
ducing strain-specific antibodies, not bnAbs. Similarly, if each 
B cell encountered all types of variant antigens every time it 
encounter ed a FDC displaying antigens, it would be able to 
be selected in successive rounds by the same antigen, but 
this would not increase the chance of producing bnAbs. It is 
of course possible that since the B cells survive with greater 
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probability that AM would continue for a while, thus increasing 
the odds of producing a B cell that might mature in to a bnAb, 
and this is a possibility that needs further study. Lowering the 
concentration can increase frustration and manipulation of 
many  variables might lead to bnAbs in these cases.

Three other recent papers on this topic are noteworthy 
[104–106]. In a very interesting paper, Chaudhury et al [106] 
studied the generation of protective and cross-reactive anti-
bodies against diverse strains of malaria. The malaria apical 
 membrane antigen has a cluster of conserved epitopes and 
a cluster of highly variable ones. Experiments showed that 
including a few strains of malaria antigens seemed to give a 
cross-reactive response. But, the enhancement in cross-reactiv-
ity could not be explained simply by the increase in responses 
to the conserved residues. Chaudhury et  al [106] described 
AM by considering the various events that occur in the GC 
as chemical reactions, and then employed the Gillespie algo-
rithm to numerically solve the underlying Master equations. 
They employed a shape space representation [107] to model 
Ab–Ag interactions. Each Ag was comprised of a single con-
served epitope (shared by all Ags) and one variable epitope. 
The relative immunogenicity of epitopes (i.e. the relative 
number of naïve B cells specific for the epitopes) and the anti-
genic distance between the variable epitopes were specified. 

Many other parameters specific to the GC reactions were esti-
mated from the literature. The interesting finding in this paper 
is that, when the epitopes on an antigen are either conserved 
or variable, immunization with multiple antigens enhance the 
fraction of B cells that target the conserved epitope (compared 
to the use of one antigen), and importantly, also enhance the 
development of Abs that are more cross-reactive to the vari-
able epitopes. Thus, the polyclonal response from all Abs 
together results in a protective response to multiple strains. 
Notice that in the model used by Chaudhury et al [106], which 
may be realistic for malaria, epitopes are comprised only of 
purely conserved residues or variable residues.

Luo and Perelson [104] used a similar model for the 
epitopes—i.e. either the epitope is completely conserved or 
completely variable in the context of HIV. B cells target either 
the conserved epitope or the variable epitopes. They studied 
immunization with cocktails of such antigens that were sepa-
rated by variable degrees of dissimilarity between the variable 
epitopes. They used a string like model for Ab–Ag interac-
tions, rather than a shape-space model, but otherwise the situ-
ation studied by Luo and Perelson [104] is very similar to that 
studied by Chaudhury et al [106]. Luo and Perelson consid-
ered broadly cross-reactive antibodies to be those that targeted 
the conserved epitope. They reported that, upon immunization 

Figure 7. (a) Schematic depiction of frustrated affinity maturation upon immunization with a cocktail of variant antigens. The three 
variant antigens share conserved residues (shown in red), but have distinct mutations in the variable residues (shown in blue, green, and 
purple). Because at early stages of affinity maturation, strong interactions with conserved residues are unlikely to evolve, if a B cell is 
positively selected in one round by a particular variant antigen, then mutates, and encounters a different variant antigen in the next round 
of selection, it is unlikely to bind sufficiently strongly to it, resulting in apoptosis. (b) Alleviation of frustration by temporal separation of 
conflicting selection forces represented by the variant antigens. The footprints of the types of lineages of antibodies that tend to evolve in 
the simulations are shown. Figure adapted with permission from [103].  Copyright 2015 Elsevier.
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with a cocktail of variant antigens, the probability of obtain-
ing cross-reactive antibodies increases if the mutational dis-
tances separating the variable epitopes and the number of 
variable epitopes are larger. This result is most likely due to 
the fact that Luo and Perelson [104] assume that there is one 
perfectly conserved epitope shared by all antigens and differ-
ent antigens contain different epitopes made up of variable 
residues only and B cells target either the conserved epitope 
or a variable epitope. The structure of the HIV virus spike 
[108, 109] indicates that the conserved residues, such as those 
that comprise the CD4 binding site, are surrounded by highly 
variable residues and protective glycans, which can be part of 
an epitope that also contains the conserved residues (as is the 
case in the study by Wang et al [103]).

Childs et  al [105] have also studied a problem pertinent 
to the development of cross-reactive antibodies. They used 
the NK-model, which was first used by Deem and co-workers 
[101] to study AM. The main result from Childs et al [105] is 
that in the presence of multiple antigenic sites, the breadth of 
the Abs that evolve is reduced.

In addition, Nourmohammad et al [110] recently consid-
ered a model of virus-antibody coevolution inspired by HIV. 
Like Luo and Perelson, they modeled Ab–Ag interactions 
through a string model with variable and conserved regions 
for the antigen (viral spike). Using methods from population 
genetics they modeled the evolution of the mean antibody 
binding affinity over time, under the assumption that the 
strength of selection for a B cell is directly related to its affin-
ity. Coevolutionary dynamics reveal a general relationship 
in the susceptibility of viruses to neutralization by antibod-
ies over time: viruses at any given time are less susceptible 
to antibodies from previous times, which they have been 
selected to escape from, while being vulnerable to the anti-
bodies that will arise in the future to neutralize them. Though 
they do not focus specifically on the development of bnAbs, 
Nourmohammad et al also identify diversity in the viral popu-
lation as an important condition to promote the emergence of 
antibodies with a broad neutralization spectrum.

While recent computational work has revealed some inter-
esting concepts and suggested that sequential immunization 
with variant antigens separated from each other by relatively 
large mutational distances may be more successful at induc-
ing bnAbs against HIV than a cocktail of the same antigens, 
many key questions were not addressed. These questions 
include: (1) What should be the variant antigens that are used 
as immunogens in a real vaccine against HIV or influenza? 
(2) What is an optimal vaccination protocol? Of the many per-
mutations, only three scenarios were studied. (3) One could 
imagine that the optimal vaccination protocol might change 
if the mutational distance between the variant antigens and 
their concentrations were manipulated. How does the chance 
of getting bnAbs depend upon the number of variant antigens 
used and the mutational distances between them? Could a 
cocktail with many similar variants followed by a sequence 
of a few not so similar variants, for example, be helpful? (4) 
Even if we get the right germline B cells that target an epitope 
containing conserved residues when activated by a simpler 
antigen, when the trimeric antigen is introduced many other 

epitopes that do not have any chance of inducing bnAbs are 
also available, which can activate new naïve B cells. How 
does the competition between these B cells and those with a 
potential for evolving in to bnAbs work? How many distract-
ing epitopes can you have and still evolve bnAbs? Addressing 
these questions may require a study that is a hybrid of those 
conducted by Chaudhury et al and Wang et al. (5) What are 
the principles that describe how the degree of frustration 
is influenced by the complex interplay between concentra-
tion, mutational distance between antigens, and the number 
of antigens, and how does this influence the probability of 
evolving bnAbs? How should we manipulate conditions so 
that dynamical evolutionary trajectories that result in bnAbs 
become highly probable?

Our understanding of how we might manipulate conditions 
to get bnAbs is at an early stage, and much remains to be 
done. Experimental, clinical, and theoretical studies should 
ultimately culminate in a general theory for AM in the pres-
ence of different spatio-temporal patterns of variant antigen 
presentation. Such a theory will provide a deep understanding 
how evolution occurs when there are different spatio-temporal 
arrangements of the potentially conflicting selection forces, 
which can then be harnessed toward practical ends.
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