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Abstract We study the equilibrium phase diagram of a generalized ABC model on an in-
terval of the one-dimensional lattice: each site i = 1, . . . ,N is occupied by a particle of
type α = A,B,C, with the average density of each particle species Nα/N = rα fixed. These
particles interact via a mean field nonreflection-symmetric pair interaction. The interaction
need not be invariant under cyclic permutation of the particle species as in the standard ABC
model studied earlier. We prove in some cases and conjecture in others that the scaled infi-
nite system N → ∞, i/N → x ∈ [0,1] has a unique density profile ρα(x) except for some
special values of the rα for which the system undergoes a second order phase transition from
a uniform to a nonuniform periodic profile at a critical temperature Tc = 3

√
rArBrC/2π .

Keywords Generalized ABC model · External fields · Phase diagram · Scaling limit

1 Introduction

The standard ABC model on an interval was considered in [1]. It is an equilibrium sys-
tem on a 1D lattice of N sites with closed boundary conditions. Each site is occupied by
one of three types of particles, denoted by A, B , and C. The particles interact via a cyclic
mean field type pair potential which is however not spatially reflection symmetric. In this
paper we generalize this model by introducing an additional interaction in which each of the
particle types moves in a separate background potential that depends linearly on position.
This breaks the cyclic symmetry in the standard ABC model. The equilibrium state of the
standard ABC model may also be obtained as the steady state for certain nearest neighbor
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exchange dynamics [1–3], and the generalized model considered here may be obtained by a
modification of the exchange rates; see Appendix A for details.

To define the model we introduce the occupation variables ηα(i), with ηα(i) = 1 (0) if
site i is (is not) occupied by a particle of type α. As each site is occupied by exactly one
particle,

∑

α

ηα(i) = 1. (1.1)

The energy of a configuration η is defined to be

E(η) = 1

N

∑

α

N∑

i=1

(
N∑

j=1

�(j − i)ηα(i)ηα+2(j) + i ξα ηα(i)

)
. (1.2)

Here α + 1 corresponds to the species following α in the ABC cyclic order, �(j − i) = 1
(0) for j > i (j ≤ i), and the ξα may be thought of as constant background electric fields,
with ξα acting on particles of type α. We will consider the model in the canonical ensemble,
with specified particle numbers of each type:

N∑

i=1

ηα(i) = Nα,
∑

α

Nα = N. (1.3)

The canonical Gibbs measure for this system is then given by

μβ(η;Nα) = 1

Z
e−βE(η), (1.4)

with Z the usual canonical partition function. We will assume Nα > 0 for all α throughout;
if one of the particle species is absent, the model simply reduces to the weakly asymmetric
simple exclusion process (WASEP) [4, 5].

Note that if one adds the same constant to each of the ξα then the energy (1.2) is only
changed by an overall constant. We may therefore set

∑
α ξα = 0, without loss of generality.

We will refer to the case where ξA = ξB = ξC = 0 as the “standard” ABC model. This is the
model considered in [1].

The energy (1.2) may also be written in a different form, in which the contribution of the
external fields is expressed through a modified mean field interaction. Using (1.1) and (1.3)
we have

N∑

i=1

i ηα(i) = −
N∑

i=1

N∑

j=1

�(j − i)ηα(i) (ηα+1(j) + ηα+2(j))

+ Nα

(
N − Nα

2
+ 1

2

)
. (1.5)

Substituting (1.5) in (1.2) and rearranging sums, we obtain

E(η) = 1

N

∑

α

(
N∑

i=1

N∑

j=1

�(j − i)3vα+1 ηα(i) ηα+2(j)

+ ξα

Nα

2
(N + Nα+2 − Nα+1 + 1)

)
, (1.6)
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Fig. 1 Different regions of the
parameter space of the vα ,
plotted in the vA–vB plane

where the vα are given by

vα = 1

3
(1 + ξα+1 − ξα+2), (1.7)

so that
∑

α

vα = 1. (1.8)

The term
∑

α ξα Nα(N + Nα+2 − Nα+1 + 1)/2 is independent of the configuration, and may
be ignored in the canonical ensemble with the Nα fixed.

It will be convenient to consider the fundamental parameters of the model, in addition
to the particle numbers Nα of each species, to be the vα rather than the fields ξα , as the vα

are more directly related to the physical behavior of the model. We divide the space of these
parameters into three regions; see Fig. 1, plotted in terms of vA and vB , as these fix vC by
(1.8). In region I, vα > 0 for all α. In regions II and III, vα < 0 for one or two values of α,
respectively. In the standard model vA = vB = vC = 1/3.

We see from (1.6) that each of the vα determines the energetically preferred alignment
of the two other particle species α ± 1. Effectively there is a contribution of 3vα/N to the
energy every time any pair of particles of species α + 1 and α + 2 are not cyclically aligned,
that is, whenever a particle of type α + 2 precedes one of type α + 1. If for example vA > 0,
a pair of B and C particles will have a lower energy arranged as B · · ·C than as C · · ·B .
If vA < 0 the preferred arrangement is reversed, and the configuration C · · ·B will have a
lower energy than the usual cyclic ordering B · · ·C. This determines the ground states of the
system, when β → ∞, as described in Appendix A.

1.1 Background

The standard ABC model was introduced by Evans et al. [2, 3] and in the form we use by
Clincy et al. [6]. This model was originally considered on the ring, i.e. with the boundary
conditions periodic rather than closed, by specifying a dynamics consisting of asymmetric
nearest neighbor exchanges between particles of different species. The stationary state of
this dynamical system on the ring is generally not an equilibrium one. Its properties have
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been studied extensively in [3] and in [7–12]. In the special case that the number of particles
of each species is the same the stationary state of the model defined on the ring is a canonical
Gibbs measure with the energy given by (1.6), with vα = 1/3 for all α. The stationary state
of the dynamical model defined on the interval, or equivalently on a ring with exchanges
across one bond blocked, is always the canonical Gibbs measure regardless of the number
of particles of each species and for equal Nα is identical to that on the ring.

The equilibrium properties of the standard ABC model on the interval were obtained ex-
actly in [1], see also [13]. In particular it was shown there that (in the thermodynamic limit)
the system has a unique state (density profiles) whenever the average densities Nα/N = rα

are not all equal to 1/3, i.e. rα �= vα for some α. When rα = 1/3 the system undergoes a
second order transition at β = βc = 2π

√
3 from a uniform density profile to a periodic pro-

file [9]. There are thus for β > βc a continuum of phases (density profiles) specified by a
rotation angle θ . The results we derive here for the case when the vα are not all equal to 1/3
are more restricted. They suggest however that the phase diagram for general vα is qualita-
tively similar to that of the standard ABC model, with a phase transition only at rα = vα .

The outline of the rest of the paper is as follows. In Sect. 2 we discuss general properties
of the macroscopic system in the scaling limit. Section 3 describes basic properties of the
solutions of the Euler-Lagrange equations. Special cases are considered in Sects. 4 and 5 for
different values of the parameters. In Appendix A we discuss properties of the microscopic
model specified by (1.2). Appendix B discusses the connection between the generalized
ABC model and the Lotka-Volterra family of ODE systems, and in Appendix C we discuss
some restrictions on solutions of the Euler-Lagrange equations for the case rα �= vα for
some α, with the vα in region I.

2 Scaling Limit

The main goal of this paper is to study the phase diagram of the equilibrium system with
energy (1.2) when N becomes macroscopic. For this we consider the scaling limit in which

N → ∞, Nα/N → rα, i/N → x ∈ [0,1], (2.1)

so that rα is the average density of the particle species α. In this limit the state of the system
is described by density profiles ρα(x), α = A,B,C, where ρα(x) represents the density of
particles of type α at a position x. These density profiles satisfy the constraints

0 ≤ ρα(x) ≤ 1,

∫ 1

0
dx ρα(x) = rα,

∑

α

ρα(x) = 1. (2.2)

Let S({ρ}) and E ({ρ}) be the entropy per site and energy per site in the scaling limit. As
in [1], see also [6, 12], these are given by

S({ρ}) = −
∑

α

∫ 1

0
dx ρα(x) logρα(x), (2.3)

E ({ρ}) =
∑

α

∫ 1

0
dx

∫ 1

0
dy �(y − x)ρα(x)ρα+2(y)

+
∑

α

∫ 1

0
dx x ξα ρα(x) + constant (2.4)
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=
∑

α

∫ 1

0
dx

∫ 1

0
dy �(y − x)3vα+1 ρα(x)ρα+2(y), (2.5)

where, as in the microscopic case, we have used the constraints (2.2) to rewrite the energy in
a form analogous to (1.6). The constant term in (2.4), equal to −∑α ξαrα(1+rα+2 −rα+1)/2,
is independent of the profiles ρα(x) and has been added in to simplify the expression (2.5).
The free energy (multiplied by β) F ({ρ}) associated to the canonical ensemble measure
(1.4), is then given by

F ({ρ}) = βE ({ρ}) − S({ρ})

= 3β
∑

α

∫ 1

0
dx

∫ 1

0
dy �(y − x)vα+1ρα(x)ρα+2(y)

+
∑

α

∫ 1

0
dxρα(x) logρα(x). (2.6)

The functional F ({ρ}) is, up to an additive constant, the large deviation functional giving
probabilities in the N → ∞ limit [1, 6, 12], that is, the probability of the profile ρα(x) is
proportional to exp[−N(F ({ρ}) − minρ F ({ρ}))]. The typical equilibrium density profiles
for the macroscopic model are thus those that minimize the free energy. There will be a
coexistence of phases when the minimizer is not unique. To study this we have to consider
solutions of the Euler-Lagrange equations (ELE) associated to the stationary points of (2.6).

Let Fα(x) = δF /δρα(x) be the variational derivative of F taken as though all of the ρα

are independent. Applying the constraints (2.2) leads to the ELE

FA − FC = constant, FB − FC = constant, (2.7)

where the Fα from (2.6) are

Fα(x) = 1 + logρα(x) + 3βvα+1rα+2

− 3β

∫ x

0
dy (vα+1ρα+2(y) − vα+2ρα+1(y)). (2.8)

It is easy to show that these Fα satisfy

∑

α

ρα(x)
∂Fα

∂x
(x) = 0, (2.9)

which with (2.7) implies that Fα(x) is constant for all α. Then from (2.8) the ELE are given
by

ρα(x) = ρα(0) exp

(
3β

∫ x

0
dy (vα+1ρα+2(y) − vα+2ρα+1(y))

)
, (2.10)

which may be evaluated at x = 1 to yield the boundary conditions

ρα(1) = ρα(0) e3β(vα+1rα+2−vα+2rα+1). (2.11)

Equivalently, one may also write the ELE in differential form as

dρα

dx
= 3βρα (vα+1ρα+2 − vα+2ρα+1) . (2.12)
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The ELE are to be solved subject to (2.2). Solutions of (2.12) are stationary solutions of
the hydrodynamic equations associated to the microscopic evolution of the model under the
dynamics discussed in Appendix A [6, 12]; these hydrodynamic equations have the form

∂ρα

∂t
= ∂

∂x

(
ρα

∂Fα

∂x

)
. (2.13)

Examining the ELE (2.12) one finds that there exist two constants of the motion,

∑

α

ρα(x) = 1, (2.14)

and

K =
∏

α

ρvα
α (x). (2.15)

To study solutions of the ELE we eliminate ρC using (2.14), so that the solutions give tra-
jectories in the ρA–ρB plane, and more specifically in the triangle

ρA,ρB ≥ 0, ρA + ρB ≤ 1. (2.16)

Any such trajectory lies within a level set of K ; as we will see below, when the vα lie in
region I such a level set is either the single point ρα = vα or a simple closed curve encircling
this point. When the vα lie in regions II and III the level curve is an open curve joining two
vertices of the triangle. A solution of the ELE satisfying the boundary conditions (2.11), or
equivalently the constraint

∫ 1
0 ρα(x)dx = rα , is obtained by choosing first a value of K and

then a portion of the trajectory labeled by K which is traversed in time one. See Figs. 2 and
3 for typical level sets and trajectories.

In the special case where rα = vα the macroscopic free energy is rotation invariant (see
Appendix A for details on the analogous result for the microscopic system). To verify this
we consider rotated profiles

ρ̃α(x) =
{

ρα(x − z) if x ≥ z,

ρα(x + (1 − z)) if x ≤ z.
(2.17)

The entropy is clearly unchanged by the rotation, S({ρ̃}) = S({ρ}), while the difference in
energy is

E ({ρ̃}) − E ({ρ}) = 3
∑

α

∫ 1

1−z

dx

∫ 1−z

0
dy vα+1 (ρα(x)ρα+2(y) − ρα(y)ρα+2(x))

= 3
∑

α

∫ 1

1−z

dx vα+1 (ρα(x) rα+2 − rα ρα+2(x)) = 0, (2.18)

where we have used rα = vα and
∫ 1

0 dx ρα(x) = rα . As we shall see this case, which gen-
eralizes the rα = 1/3 case in the standard ABC model, plays a special role in the phase
diagram.

It was proven in [1, Sect. 10] for the standard ABC model that solutions of the ELE
always exist, and that the minimizer of the free energy must be given by one of the solutions.
The same result holds for the generalized ABC model, with no modification of the proof
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required. The fundamental question is then whether or not there is a unique minimizer. This
question was answered completely for the standard ABC model in [1], and we believe that
the direct generalization of the behavior in that case should hold for the general model. We
state this here as a conjecture, although it is partially established in [1] and in the remainder
of this paper; the statement depends upon a critical temperature Tc = β−1

c , where

βc = 2π

3
√

vAvBvC

. (2.19)

Conjecture 2.1 (Solutions of the ELE) (a) If the vα lie in region I and rα = vα for α =
A,B,C then there exist

(i) the constant solution ρα(x) = vα , 0 ≤ x ≤ 1,
(ii) for β > nβc , n = 1,2, . . ., a unique solution corresponding to a trajectory which tra-

verses one of the level sets of K exactly n times, which we refer to as a type n solution,
and

(iii) no other solutions. The minimizer of the free energy is, for β ≤ βc , the (unique) constant
solution and, for β > βc , the type 1 solution. At βc there is a second order phase
transition from the homogeneous phase to the phase segregated, heterogeneous phase.

(b) For values of the vα and rα other than those discussed in (a) there exists for every β

a unique solution minimizing the free energy.

Statement (a.i) here is a trivial observation, and the existence portion of (a.ii) follows
immediately from the existence of a minimizer and the fact that β > βc the uniform solution
is unstable (Sect. 4.2); we give an independent argument in Sect. 4. Beyond this, as we
will discuss below, we can prove all or part of this conjecture for some special values of
the parameters besides the standard case, vα = 1/3 for all α, for which the conjecture has
been proven in full. In particular we can prove uniqueness of the solution of the ELE when
β < 4π/3. This follows from the result in [1] that for such β the standard ABC model free
energy functional is globally convex on the space of density functions satisfying (2.2). As
the addition of external fields only adds terms that are linear in the particle densities to the
standard ABC free energy (see (2.5)), the second variation of (2.6) with respect to the density
functions is the same as that of the standard model. Thus for β < 4π/3 the free energy for
the generalized ABC model with external fields is also globally convex, implying that there
is a unique solution of the ELE, which must be the minimizer of the free energy. For rα = vα

this is just the constant solution ρα(x) = vα , 0 ≤ x ≤ 1. For other values of the rα there is
for β < 4π/3 a unique segment of a unique K = K(β; r) trajectory which minimizes F .

For β ≥ 4π/3 and rα = vα (so that the vα are in region I), we have the following addi-
tional results:

(i) Conjecture 2.1(a) is proven when, for some α, vα = 1/2 and vα+1 = vα+2 = 1/4, and
checked numerically in other cases.

(ii) The constant solution is linearly stable for β < βc and unstable for β > βc .
(iii) Nonconstant minimizers are always of type 1.
(iv) For small enough K , or equivalently, for large enough β , the type 1 solution is unique.

When rα �= vα for some α we prove uniqueness for the cases when one of the vα is zero and
the other two have opposite signs, and when one of the vα is one.

In the next section we describe general properties of the solutions of the ELE. The case
rα = vα (with the vα in region I) is discussed in detail in Sect. 4, while the special cases
when rα �= vα are considered in Sect. 5.
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Fig. 2 Plots of ρA (solid), ρB (dashed), and ρC (dotted), at right, and their corresponding trajectories in the
ρA–ρB plane, at left. See description under region I, Case 1

3 General Properties of Solutions of the ELE

The trajectories of the densities ρα(x) that are solutions of the ELE may be obtained by
studying the level sets of the constant of the motion K (2.15), as described in Sect. 2. To do
this let us define a line in the ρA–ρB plane passing through the point (vA, vB) by setting

ρB = vB + m(ρA − vA) , (3.1)

with m an arbitrary constant. The change in logK as ρA is varied along the line (3.1) can be
manipulated using (2.2) to yield

d logK

dρA

=
(

vA

ρA

− vC

ρC

)
+ m

(
vB

ρB

− vC

ρC

)

=
[

1 + ρA

ρC

(
m2 + 2m + 1

)+ ρA

ρB

m2

](
vA

ρA

− 1

)
. (3.2)

Thus K is monotone increasing for ρA < vA and decreasing for ρA > vA. A similar result
holds for ρB and vB . The shape of the level sets of K , and thus also the trajectories of the
densities, depends upon which region the vα lie in; compare Figs. 2 and 3. We now give
more details.

3.1 Region I

It follows from (3.2) that in region I K achieves its maximum value at the center point
(vA, vB), where

K|ρα=vα = Kmax =
∏

α

vvα
α , (3.3)

and decreases monotonically as one moves along any straight line in the (ρA, ρB) plane
starting from the center. K approaches its minimum value of zero on the boundaries of the
triangle (2.16), where one or more of the particle densities goes to zero. As K is continuous
in ρA, ρB inside the triangle, this implies that the level sets of K in this case consist of a
single point at the center (vA, vB) and closed curves surrounding the center point.
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As the level curves of K are closed, nonconstant solutions ρα(x) of the ELE must be
portions of periodic functions of x. When the period τ is greater (less) than 1, the trajectory
of the densities makes less (more) than one full rotation around the center point. We will
refer to solutions with n − 1 < 1/τ ≤ n, for n an integer, as type n solutions. For example,
a solution that does not make one full rotation would be labeled as type 1, while a solution
making exactly three rotations around the center would be labeled as type 3. This is consis-
tent with the terminology used in Conjecture 2.1(a). The constant solution of the ELE is not
assigned a type.

Trajectories of the particle densities satisfying the ELE for a given set of vα depend upon
the choice of the rα . For the vα in region I there are two cases to consider: (1) rα = vα for
all α, (2) rα �= vα for some α.

Case 1 (rα = vα) In this case the model is rotation invariant, and one has ρα(1) = ρα(0) for
all α. Here both constant and nonconstant solutions of the ELE are possible. The constant
solution is given by ρα(x) = vα , 0 ≤ x ≤ 1, as noted above. As ρα(1) = ρα(0), see (2.11),
nonconstant solutions must have an integer number of periods in the interval x ∈ [0,1],
corresponding to the number of times the trajectory orbits the center. Note that, as one
moves along the interval in x, the maxima (and minima) of the particle densities proceed
in cyclic order, that is, after species α reaches its maximum (minimum) density, the next
species to achieve its maximum (minimum) density is α + 1.

Example numerical solutions of the ELE in this case and their corresponding trajectories
with vA = 1/2, vB = 1/3, vC = 1/6, and rα = vα for all α, are shown in Fig. 2. In this plot
the inverse temperatures are β1 = 13, β2 = 15, and β3 = 20, all larger than βc , which is 4π

for this choice of the vα . The trajectories lie along lines of constant K , with K1 ≈ .349,
K2 ≈ .291, and K3 ≈ .189 for the solutions at β1, β2, and β3 respectively. Arrows indicate
the flow along the trajectory as x increases, and the point (vA, vB) is marked by a dot. For
this case Kmax ≈ .364.

Case 2 (rα �= vα) Here there is no rotation invariance and the densities at opposite ends
of the interval are not the same, ρα(1) �= ρα(0) for some α, see (2.11). In this case only
nonconstant solutions of the ELE are possible at finite temperatures, i.e. for β > 0. These
solutions will be portions of the periodic solutions described in Case 1. In contrast to the
rα = vα case, however, solutions of type n do not exist for arbitrarily large values of n; there
is some cutoff nmax ≥ 2, which depends on the rα and the vα , above which type n solutions,
n ≥ nmax, do not exist. This is because the average value of each density ρα around one full
orbit of the center is vα , so as n becomes large the average density for the full profile rα is
steadily driven towards vα . See Appendix C for more details.

3.2 Regions II and III

When the vα lie in regions II and III, the point (vA, vB) lies outside the triangle (2.16). Thus
by (3.2) the level sets of K inside the triangle cannot be closed curves, as when the vα are in
region I. Let us consider the value of K along one of the boundaries of the triangle, where
ρα = 0 for some α. If vα is less than zero, K will be infinite along this boundary. If vα is
zero K will be finite, and if vα is larger than zero K will be zero. On the vertices where
two boundaries meet, with K equal to zero along one and infinite along the other, the value
of K at the vertex is not well defined, depending on the way in which the limit is taken.
Thus when the vα lie in regions II and III, lines of constant K for K finite and nonzero
will be curves terminating on the vertices of the triangle where boundaries along which K

is infinite and zero meet. When the vα lie on the boundaries between different regions, e.g.
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Fig. 3 Plots of ρA (solid), ρB (dashed), and ρC (dotted), at right, and their corresponding trajectories in the
ρA–ρB plane, at left. See description under regions II and III

for the special values of the vα considered in Sect. 5, the level sets of K will be curves with
ends terminating on either the edges or the vertices of the triangle. Solutions of the ELE are
therefore nonconstant at finite temperatures and are not periodic.

Additionally, one may easily see by considering the ELE (2.12) that when one or two
of the vα are negative, the density of one particle species will monotonically increase in x,
and another species will monotonically decrease. If for example vA < 0 while vB, vC > 0,
ρB will be monotonically increasing and ρC will be monotonically decreasing. Note that if
the vα lie in region II then as x increases from 0 to 1 the maxima and minima of the particle
densities proceed in cyclic order, as for region I systems, but when the vα lie in region III
the order is reversed. That is, in region III a maximum (minimum) density of species α is
followed by a maximum (minimum) of species α + 2.

Example numerical solutions and the corresponding trajectory of the densities with
vA = 4/5, vB = 2/3, vC = −7/15, rA = rB = rC = 1/3, are plotted in Fig. 3. In this figure
β1 = 1, β2 = 3, and β3 = 5. The trajectories lie along lines of constant K , with K1 ≈ .306,
K2 ≈ .167, and K3 ≈ .066 for the solutions at β1, β2, and β3 respectively. Portions of the
level curves not traversed by the solutions are marked with dashed lines. Arrows indicate
the flow along the trajectory, and the point (vA, vB) is marked by a dot.

4 The Case rα = vα

If rα = vα for all α (so that we are necessarily in region I) then as already noted the constant
solution ρα(x) = vα , 0 ≤ x ≤ 1, is always a solution of the ELE, and other solutions are
given by traversing, exactly n times for a type n solution, one of the simple closed curves
which is a level set of K . We show in Sect. 4.2 that the constant solution cannot minimize the
free energy when β > βc , and in Sect. 4.3 that no type n solution with n ≥ 2 can minimize
the free energy. Thus the existence of a unique minimizer as described in Conjecture 2.1(a)
would be established if we could show that no nonconstant solution can exist for β < βc and
that for β > βc there is a unique type 1 solution, exactly what is proven in [1] for vα = 1/3
for all α.

Now under a change of scale t = βx the ELE (2.12) become

dρα

dt
= 3ρα (vα+1ρα+2 − vα+2ρα+1) , (4.1)
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and type 1 solutions of (2.12) correspond to solutions of (4.1) which have period β , the
inverse of the temperature. The period τ(K) of the solution of (4.1) is easily seen to be
a continuous function of K for 0 < K ≤ Kmax; a perturbative calculation as in [1] shows
that limK↗Kmax τ(K) = βc as K and we establish in Sect. 4.4 that limK↘0 τ(K) = ∞. The
existence portion of Conjecture 2.1(a.ii) follows immediately from these observations. If one
could show that the period of the solution of (4.1) is a monotonically decreasing function
of K for 0 < K ≤ Kmax then uniqueness would be established. However, one may establish
a correspondence between the family of systems (4.1) parameterized by the vα in region I
and a large subset of the generalized Lotka-Volterra family of quadratic centers, specifically,
those parameterized by (b, c) with b > 0 in the parameterization of [14] (see Appendix B for
details), and monotonicity of the period as a function of orbit size is for this family an open
question [14]. In terms of the parameters used in (4.1), monotonicity was established in [1]
when all vα are 1/3, and below we establish monotonicity when, for some α, vα = 1/2 and
vα+1 = vα+2 = 1/4. Finally, monotonicity at sufficiently low temperature (or equivalently,
small K) follows, for any vα , from the correspondence established in Appendix B and the
results of [14].

4.1 vα = 1/2, vα+1 = vα+2 = 1/4

When the vα lie in region I and two of them are equal, say vA = vB = γ with 0 < γ < 1/2,
one may find explicitly an autonomous evolution equation for the third. We begin with the
expression

K = ρA(x)γ ρB(x)γ ρC(x)1−2γ , (4.2)

which together with (2.2) may be used to obtain the densities ρA and ρB in terms of ρC :

ρA(x) = 1

2

(
1 − ρC(x) ±

√
(1 − ρC(x))2 − 4K1/γ ρC(x)−λ

)
, (4.3)

ρB(x) = 1

2

(
1 − ρC(x) ∓

√
(1 − ρC(x))2 − 4K1/γ ρC(x)−λ

)
, (4.4)

where λ = (1 − 2γ )/γ . With (4.3) the reparameterized ELE (4.1) for ρC is

ρ ′
C(t) = 3γρC(t) (ρB(t) − ρA(t))

= 3γρC(t)
(
±
√

(1 − ρC(t))2 − 4K1/γ ρC(x)−λ

)
. (4.5)

Squaring (4.5) we have

9γ 2

2
ρ ′

C(t)2 + UK(ρC(t)) = 0, (4.6)

with

UK(ρ) = 9

32

(
4K1/γ ρ2−λ − ρ2 (1 − ρ)2

)
. (4.7)

This is the equation for a zero energy particle of mass 1 confined in a potential well. The ze-
ros of the potential correspond to the turning points for the particle. Numerical calculations
of the period, performed for many different values of γ , find that τ(K) is a monotonically
decreasing function of K .
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With γ = 1/4 and thus λ = 2 the potential becomes quartic, and an analytic calculation
is possible. Here the zeros of UK are

1

2
± ρ0, ρ0 =

√
1

4
− 2K2. (4.8)

Note that in this case Kmax = 1/2
√

2, so 0 < ρ0 < 1/2. The period τ(K) of the type 1
solution ρ(t) may now be directly calculated, yielding

τ(K) =
∫ 1/2+ρ0

1/2−ρ0

dρ
2√−2UK(ρ)

= 16/3√
1/2 − ρ2

0 − ρ0

F ≤
⎛

⎝π

2
,−

4ρ0

√
1/2 − ρ2

0

(

√
1/2 − ρ2

0 − ρ0)2

⎞

⎠ . (4.9)

Here F(π/2, ·) is the complete elliptic integral the first kind. The period (4.9) is a monoton-
ically decreasing function of K , with (as expected) limK↗Kmax (τ (K)) = 8

√
2π/4 = βc and

limK↘0 τ(K) = ∞. Thus for all β > βc there is a unique value of K for which τ(K) = β

and hence a unique type 1 solution of the ELE, and there is no type 1 solution for β < βc .

4.2 Linear Stability of the Constant Solution for β < βc

We will now consider the linear stability of the constant solution ρα(x) = vα , 0 ≤ x ≤ 1,
via a computation similar to that of [1]. Let us consider two bounded continuous functions
φA(x), φB(x), satisfying

∫ 1

0
dx φA(x) =

∫ 1

0
dx φB(x) = 0, (4.10)

and perturb the constant solution as

(ρA,ρB,ρC) → (vA + ε φA, vB + ε φB, vC − ε (φA + φB)) (4.11)

for some fixed ε very small. Under this perturbation all the terms in the free energy linear in
ε cancel. The order ε2 contribution to the entropy is

1

2

∫ 1

0
dx

[
1

vA

φ2
A(x) + 1

vB

φ2
B(x) + 1

vC

(φA(x) + φB(x))2

]
. (4.12)

The energy due to interaction with the external fields is linear in the densities, so the ε2 term
for the energy is due entirely to the asymmetric mean field ABC interaction,

β

∫ 1

0
dx

∫ 1

0
dy�(y − x)

[−φA(x)(φA(y) + φB(y)) + φB(x)φA(y)

− (φA(x) + φB(x))φB(y)
]

= 3β

∫ 1

0
dx

∫ 1

0
dy �(y − x)φB(x)φA(y). (4.13)
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Now expanding φA(x) and φB(x) in a Fourier series as

φA(x) =
∞∑

n=1

(an sin (2πnx) + bn cos (2πnx)), (4.14)

φB(x) =
∞∑

n=1

(cn sin (2πnx) + dn cos (2πnx)), (4.15)

we see that the second variation of the free energy functional around the constant solution is
given by

∞∑

n=1

[
vA + vC

vAvC

(a2
n + b2

n) + vB + vC

vBvC

(c2
n + d2

n)

+ 2

vC

(ancn + bndn) − 3β

πn
(bncn − andn)

]
. (4.16)

If we write un = (an, bn, cn, dn), the second variation can be expressed in matrix form as∑∞
n=1 un M uT

n / (vAvBvC), where

M =
⎡

⎢⎣

vB(1 − vB) 0 vAvB 3β/(2πn)

0 vB(1 − vB) −3β/(2πn) vAvB

vAvB −3β/(2πn) vA(1 − vA) 0
3β/(2πn) vAvB 0 vA(1 − vA)

⎤

⎥⎦ . (4.17)

The eigenvalues of M are

λ± = 1

2

[
vA(1 − vA) + vB(1 − vB)

±
√

(vA(1 − vA) + vB(1 − vB))2 − 4

(
vAvBvC −

(
3β

2πn

)2)
⎤

⎦ , (4.18)

each with degeneracy 2. Thus for β ≤ βc = 2π/(3
√

vAvBvC) the matrix M is positive defi-
nite, so the second variation of the free energy around the constant solution is also positive
and the constant solution is a local minimum. At lower temperatures, β > βc , the smallest
eigenvalue λ− becomes negative, so in this regime the constant solution can no longer be
the minimizer of the free energy.

4.3 Solutions of Type n ≥ 2

In this section we will show that solutions of the ELE for rα = vα with two or more full
periods in x ∈ [0,1] can never minimize the free energy.

Consider a set of profiles {ρ}, not necessarily solutions of the ELE but satisfying the
constraints (2.2). Then for any integer n ≥ 2 we define the set of profiles {ρ̂n} by

ρ̂n,α(x) = ρα(nx − j) for
j

n
≤ x ≤ j + 1

n
, j = 0, . . . , n − 1. (4.19)
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That is, we obtain the ρ̂n,α by shrinking the ρα horizontally by a factor of n and repeating
these reduced profiles n times in the interval [0,1]. We claim then that

S({ρ̂n}) = S({ρ}), (4.20)

E ({ρ̂n}) = 1

n
E ({ρ}) +

(
1 − 1

n

)
E ({r}), (4.21)

where E ({r}) = 9vAvBvC/2 is the energy of the constant solution ρα(x) = vα .
The proof proceeds by direct calculation. First let us consider the entropy of the new

profiles,

S({ρ̂n}) = −
∑

α

n−1∑

j=0

∫ (j+1)/n

j/n

dx ρ̂n,α(x) log ρ̂n,α(x)

= −
∑

α

n−1∑

j=0

1

n

∫ 1

0
dx̃ ρα(x̃) logρα(x̃) = S({ρ}). (4.22)

Here we have used a change of variables with x = (x̃ + j)/n. The calculation of the energy
proceeds similarly. Using the same change of variables we have

E ({ρ̂n}) = 3
∑

α

n−1∑

j,k=0

1

n2

∫ 1

0
dx̃

∫ 1

0
dỹ �

(
ỹ + k − x̃ − j

n

)
vα+1ρα(x̃)ρα+2(ỹ)

= 3
∑

α

{
n−1∑

j=0

1

n2

∫ 1

0
dx̃

∫ 1

0
dỹ � (ỹ − x̃) vα+1ρα(x̃)ρα+2(ỹ)

+
∑

0≤j<k≤n−1

1

n2

∫ 1

0
dx̃

∫ 1

0
dỹ vα+1ρα(x̃)ρα+2(ỹ)

}

= 1

n
E ({ρ}) +

(
1 − 1

n

)
E ({r}), (4.23)

as there are n(n − 1)/2 pairs of indices with 0 ≤ j < k ≤ n − 1.
Now there are two cases to consider. If E ({ρ}) < E ({r}), then by (4.23) E ({ρ̂n}) > E ({ρ}),

thus the original profiles ρα have a lower free energy and thus the ρ̂n,α cannot be minimiz-
ers. If instead E ({ρ}) ≥ E ({r}), then E ({ρ̂n}) ≥ E ({r}) as well, and as long as ρα is not the
constant solution S({r}) > S({ρ̂n}). Then F ({r}) < F ({ρ̂n}), so again the ρ̂n,α are not mini-
mizers. A type n solution of the ELE at an inverse temperature β is of the form ρ̂n,α , where
ρα is a type 1 solution at an inverse temperature β/n. Thus no type n solution for n ≥ 2 can
minimize the free energy.

4.4 K-β Relation

It follows from the result of Sect. 4.3 that when rα = vα a minimizer of the free energy must
be either the constant solution of the ELE or a type 1 solution. Let K(β) denote the value
of K for the minimizer at temperature β; if several minimizers exist then we choose one
of them arbitrarily to define K(β). Of course, if K(β) < Kmax then τ(K(β)) = β . If τ(K)

is monotonic then K(β) will be the inverse of the function τ(K) and must be continuous,
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since τ(K) is, but we cannot show this and thus cannot rule out the possibility that K(β)

may be discontinuous. However, we do show here that K(β) must be monotonic decreasing.
We begin with the integral form (2.10) of the ELE:

logρα(x) = logρα(0) + 3β

∫ x

0
dy (vα+1ρα+2(y) − vα+2ρα+1(y)). (4.24)

Substituting this into the entropy (2.3) and using
∫ 1

0 ρα(x)dx = rα gives

∑

α

rα logρα(0)

= −3β
∑

α

∫ 1

0
dx

∫ x

0
dy ρα(x) (vα+1ρα+2(y) − vα+2ρα+1(y)) − S({ρ})

= 6β
∑

α

∫ 1

0
dx

∫ 1

0
dy �(y − x)vα+1ρα(x)ρα+2(y) − S({ρ}) − 3β

∑

α

vαrα+1rα+2

= 2βE ({ρ}) − S({ρ}) − 2βE ({r}), (4.25)

where E ({r}) (see (2.6)) is the energy of the constant profile ρα(x) = rα (which is not a
solution of the ELE unless rα = vα). Equation (4.25) is a general relation which holds for
all profiles {ρ} satisfying the ELE, i.e. for all stationary points of F ({ρ}), whether or not
rα = vα .

Now suppose that rα = vα for all α. The left hand side of (4.25) is then just logK =∑
α vα logρα(x), the same for all x ∈ [0,1]. Then if {ρ} = {ρ(β)} is the minimizing solution

of the ELE corresponding to K(β), (4.25) becomes

logK(β) = 2βE ({ρ(β)}) − S({ρ(β)}) − 2βE ({r}), (4.26)

where now E ({r}) = E ({ρ(0)}) = 9vAvBvC/2. For β2 > β1 we subtract the correspond-
ing (4.26) and rearrange terms to obtain

log
K(β2)

K(β1)
= 2

(
Fβ2({ρ(β2)}) − Fβ2({ρ(β1)}))+ (S({ρ(β2)}) − S({ρ(β1)}))

+ 2(β2 − β1)
(

E ({ρ(β1)}) − E ({ρ(0)})), (4.27)

where we have indicated the explicit β dependence in (2.6) by writing Fβ . But it follows
from simple general thermodynamic arguments that both S({ρ(β)}) and E ({ρ(β)}) are mono-
tonic decreasing functions of β , and since ρ(β2) minimizes Fβ2 all three terms on the right
side of (4.27) are nonpositive. This establishes the monotonicity of K(β). We note in addi-
tion that, if at a particular value of the temperature β there exist several minimizers of the
free energy, {ρ(β)

i }, i = 1, . . . , n, then log (Ki/Kj ) = S({ρ(β)

i }) − S({ρ(β)

j }).
One may also see that when β is large, K(β) must be small. For from (4.26) we have

logK(β)

β
= 2

(
E ({ρ(β)}) − E ({r}))+ β−1 S({ρ(β)}); (4.28)

since the energy and entropy are bounded functions and E ({ρ(β)}) is decreasing in β the
right hand side of (4.28) approaches a finite value as β ↗ ∞. In fact, one can show that
limβ↗∞ E ({ρ(β)}) is the ground state energy per particle 3vAvBvC (see Appendix A), so that
asymptotically logK(β) ∼ −(3/2)vAvBvCβ .
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5 Special Cases when rα �= vα , with the vα Outside of Region I

For certain values of the rα and vα we are able to prove Conjecture 2.1(b). There are two
such special cases. In the first case, one of the vα is zero and vα±1 have opposite signs (so
that one of vα±1 must be greater than one). In this case, the vα lie in fact on the boundary
between regions II and III. In the second case one of the vα is one. We will present the proof
of Conjecture 2.1(b) for these cases in the sections below.

5.1 vα = 0, vα±1 > 1

For definiteness let us take vC = 0, vB > 1. On the orbit with conserved quantity K we have
ρA(x)vAρB(x)1−vA = K and so

ρA(x) = K1/vAρB(x)γ , ρB(x) = K−1/(vA−1)ρA(x)1/γ , (5.1)

where γ = (vA − 1)/vA satisfies γ > 1. Thus the profiles satisfy

ρ ′
A = 3βρA(vBρC) = 3β(1 − vA)ρA(1 − ρA − K1/(1−vA)ρ

1/γ

A ) ≡ fK(ρA), (5.2)

ρ ′
B = 3βρB(−vAρC) = −3βvAρB(1 − ρB − K1/vAρ

γ

B) ≡ gK(ρB). (5.3)

Note that if K∗ > K then

fK(ρ) > fK∗(ρ) > 0 and gK∗(ρ) > gK(ρ) > 0. (5.4)

Now consider two profiles ρα(x) and ρ∗
α(x) satisfying the ELE which have different

starting values: (ρA(0), ρB(0)) �= (ρ∗
A(0), ρ∗

B(0)); we claim that the corresponding averages
are not equal: (rA, rB) �= (r∗

A, r∗
B). We denote the corresponding conserved quantities by

K and K∗ and consider several cases.

Case 1 (K = K∗) Without loss of generality we take ρ∗
A(0) > ρA(0) and hence by (5.1) also

ρ∗
B(0) > ρB(0). Since ρα(x) and ρ∗

α(x), α = A,B , satisfy the same differential equation
which by (5.4) has a strictly negative right hand side we have ρα(x) > ρ∗

α(x) for all x and so

r∗
A > rA and r∗

B > rB. (5.5)

Case 2 (ρ∗
A(0) = ρA(0)) Now without loss of generality we may take K∗ > K and so by (5.1)

we have ρ∗
B(0) > ρB(0). Thus by (5.3) and (5.4) we have that ρ∗

B(x) > ρB(x), and by (5.2)
and (5.4) that ρA(x) > ρ∗

A(x) for 0 < x ≤ 1, and so

r∗
A < rA and r∗

B > rB. (5.6)

The general case Since we have dealt with the possibility K∗ = K in Case 1 we may take
K∗ > K . The case ρ∗

A(0) = ρA(0) has been considered in Case 2. If ρ∗
A(0) > ρA(0) we

introduce a profile ρ∗∗
α with ρ∗∗

A (0) = ρ∗
A(0) and K∗∗ = K ; then by Cases 1 and 2 we have

r∗
B > r∗∗

B > rB. (5.7)

If instead ρ∗
A(0) < ρA(0) we argue similarly, introducing a profile ρ∗∗

α with ρ∗∗
A (0) = ρA(0)

and K∗∗ = K∗, obtaining

rA > r∗∗
A > r∗

A. (5.8)
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Thus the solution of the ELE must be unique.

The vC = 0, vB < 0, vA = 1 − vB > 1 case may be argued very similarly, but making use
of comparisons between the values of the densities at the end of the interval ρα(1) rather
than the initial values ρα(0), α = A,B . Otherwise the argument proceeds identically to the
case above, so we will omit the full derivation here.

5.2 vα = 1

When one of the vα = 1 it is possible to solve the ELE exactly. Let us assume vA = 1 and
vB , vC are not zero, a trivial case, so the vα lie in region II. The ELE for ρA and ρB become

dρA

dx
= 3βvB ρA(ρB + ρC)

= 3βvB ρA(1 − ρA), (5.9)

dρB

dx
= 3βρB(vC ρA − ρC)

= −3β ρB(1 − ρB) + 3β(1 − vB)ρA ρB. (5.10)

The equation for ρA may easily be solved to obtain

ρA(x) = 1

1 + cA e−3βvB x
, (5.11)

where cA = 1/ρA(0) − 1. Using (5.11) one may then solve for the density ρB ,

ρB(x) = cA

(
cA + e3βvB x

) 1−vB
vB

1

(1 + cA)1/vB + cA cB e3βvB x
, (5.12)

with the constant

cB = (1 + cA)1/vB

(
1

(1 + cA)ρB(0)
− 1

cA

)
.

To show that the solution is unique, we must demonstrate that there is only one choice of
the initial values ρα(0) which will yield a particular set of average densities rα at a given β .
This may be seen directly from the density profiles (5.11), (5.12), which depend simply on
cA and cB . It is easy to see that

dρA(x)

dcA

< 0,
dρB(x)

dcB

< 0, (5.13)

and as dcA/dρA(0) < 0, dcB/dρB(0) < 0, we have

drA

dρA(0)
> 0,

drB

dρB(0)
> 0. (5.14)

Thus there is a unique solution of the ELE, given by (5.11), (5.12), for all β . The average
density of the profiles is given by

rA = 1

3βvB

log
ecA + e3βvB

1 + ecA
, (5.15)
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rB = 1 − 1

3β
log

(ecA + e3βvB )1/vB + e3β+cA cB

(1 + ecA)1/vB + ecA cB

, (5.16)

rC = 1 − rA − rB. (5.17)

In principle one may invert equations (5.15), (5.16) to write the solutions in terms of the
average densities rA and rB rather than ρA(0) and ρB(0).
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Appendix A: Properties of the Microscopic System

Many of the properties of the canonical measure μβ for the standard ABC model, described
in [1, Sects. 1 and 2], hold with relatively minor changes for the generalized model studied
here. Below we discuss a few of the necessary modifications.

As in the standard ABC model, there is a certain nearest neighbor exchange dynamics
which satisfies detailed balance with respect to the canonical Gibbs measure μβ . In this
dynamics a particle of type α at site i and a particle of type γ at site i + 1 exchange places
α γ → γ α with rate qαγ ,

qαγ =
{

e−3β vα+2/N if γ = α + 1,

1 if γ = α − 1,
(A.1)

where the vα are as in (1.7). When the ξα are not all zero (i.e. the vα are not all equal), the
system no longer has cyclic symmetry in the particle types.

In analogy with what happens in the standard ABC model when Nα = N/3 for all α,
we have here a rotation invariant energy when vα N = Nα for all α (this is clearly only
possible when the vα lie in region I). That is, if one imagines connecting site N to site 1
and then rotating the configuration η, the rotation leaves E unchanged. A simple way to
check the rotation invariance is to consider moving a particle of type α from the end of the
interval at site N to site 1, and translating all the other particles from sites i to i + 1. The
change in energy after this rotation is then 3 (vα+1 Nα+2 − vα+2 Nα+1) /N , which vanishes
for vα N = Nα . Note that in this rotation invariant case the rates (A.1) for a particle of type
α at a site i and a particle of type γ at i + 1 to exchange become

qαγ =
{

e−3β Nα+2/N2
if γ = α + 1,

1 if γ = α − 1,
(A.2)

which satisfies the general condition on exchange rates derived in [3] for which detailed
balance holds on the ring.

We remark that the energy in this rotation invariant case may be constructed in a different
way, beginning from the standard ABC model energy with ξα = 0. If one wishes to write
down an ABC-like energy that is explicitly rotation invariant, one way to achieve this is to
take the standard ABC energy and average over starting the sum at each point of the lattice,
i.e.

Ẽ(η) = 1

N

N∑

k=1

(
1

N

∑

α

N+k∑

i=1+k

N+k∑

j=1+k

�(j − i)ηα(i)ηα+2(j)

)
, (A.3)
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where one imagines the interval with periodic boundary conditions, such that site N + m

refers to site m. This gives

Ẽ(η) = 1

N

∑

α

N∑

i=1

N∑

j=1

(
�(j − i) + i − j

N

)
ηα(i)ηα+2(j), (A.4)

where the interaction term depends upon the distance between sites i and j as well as their
order on the line. One may easily rearrange this expression to find

Ẽ(η) = 1

N

∑

α

N∑

i=1

N∑

j=1

�(j − i)3
Nα+1

N
ηα(i) ηα+2(j), (A.5)

which is identical to (1.6) up to a constant when vαN = Nα .
Now let us consider the ground states of the model. As in the standard ABC model,

in the β → ∞ limit the particle species become phase separated, with the ground states
consisting of macroscopic domains of pure A, B , and C particles. The arrangement of these
domains may depend upon the vα as well as the number of each particle species Nα . For
values of vα in regions II and III, where one or two of the vα is negative, the ground state is
completely determined by requiring that all nearest neighbor configurations be stable, i.e.,
that the energy may not be lowered by making a nearest neighbor exchange. Consider the
possible orderings of nearest neighbor pairs of different particle species: AB, AC, BA, BC,
CA, CB. When the vα do not all have the same sign, the energetically preferred alignment
of two nearest neighbor particles of different species will be cyclic for some pairs and anti-
cyclic for others. Thus it is not possible to have an arrangement of four or more domains
where all nearest neighbor pairs are preferably aligned. Generally, when the vα lie in region
II (III), if vγ < 0(> 0), the ground state is given by three domains arranged in cyclic (anti-
cyclic) order, i.e. in a cyclic (anti-cyclic) permutation of ABC, with the domain of type γ

particles in the middle. For example, if vA < 0 while vB, vC > 0, the stable nearest neighbor
configurations are AB, CB, and CA, thus the ground state must consist of three domains of
particles cyclically arranged as CAB.

When the vα lie in region I, the ground states of the ABC model with external fields
are closely related to those of the standard ABC model. To show the correspondence, let
us consider a rescaling of the energy (1.6), Ẽ(η) = E(η)/(vA vB vC). The rescaled energy
of a sequence of domains, where the ith domain consists of kα,i particles of type α (and
no particles of any other type), is up to a constant factor formally identical to the standard
ABC energy of the same sequence of domains, but with kα,i/vα particles in each domain. Of
course, kα,i/vα may not be an integer, which must be taken into account when considering
the degeneracy of ground states. One may however apply the same analysis as in [1] to
determine the lowest energy configuration of domains. This ground state energy per site
is given, up to a constant term (see (1.6)), by 3 min {vA rB rC, vB rC rA, vC rA rB}. One then
finds that the ground state of the generalized ABC model, with vα in region I and Nα particles
of type α, is arranged in the same order and has the same symmetries as the ground state of
the standard ABC model with Nα/vα particles of type α. There are three different cases.

1. If one of the Nα/vα is larger than the other two then there exists a unique ground state
with three domains arranged in cyclic order, with the particles for which Nα/vα is largest
in the middle. For example if NA/vA > NB,C/vB,C , the ground state arrangement of do-
mains is CAB, with the particles of type A in the middle domain.
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2. If two of the Nα/vα are equal and larger than the term for the third species, the ground
state is degenerate, consisting of three or four domains cyclically arranged with the parti-
cles for which Nα/vα is smallest placed on the boundaries of the interval. If for instance
NB/vB = NC/vC > NA/vA, the ground state is NA + 1 degenerate, with the domains
arranged as ABC, ABCA, or BCA; the type A particles may appear on either the left or
the right sides of the interval.

3. If all of the Nα/vα are equal, the ground state is N degenerate, consisting of arbitrary
rotations of the domains arranged in ABC cyclic order. In this case, as discussed above,
the energy of any configuration η is invariant under rotation.

Appendix B: The Lotka-Volterra Family of Centers and ABC-Like Systems of ODEs

In this section we will demonstrate that the ABC model with external fields is a member of
the Lotka-Volterra family of ODE systems when 0 < vα < 1 for all α, i.e. when the vα lie in
region I.

First let us change variables from x to t = 3β
√

vA vB vC x, a slightly different rescaling
than that used in (4.1) which will be convenient in the work that follows. With this change
the ELE become

ρ̇α = ρα (uα+1 ρα+2 − uα+2 ρα+1) , (B.1)

where uα = vα/
√

vA vB vC ; the uα satisfy

uA + uB + uC = uAuBuC. (B.2)

After eliminating ρC via (2.14) and uC via uC = (uA + uB)/(uA uB − 1), we obtain the
equations

ρ̇A = ρA

[
uB(1 − ρA) − uA(1 + u2

B)

uA uB − 1
ρB

]
,

ρ̇B = −ρB

[
uA (1 − ρB) − uB(1 + u2

A)

uA uB − 1
ρA

]
.

(B.3)

In this form uA and uB are arbitrary positive constants satisfying uA uB > 1, and the station-
ary point is

vA = uA uB − 1

uB (uA + uB)
, vB = uA uB − 1

uA (uA + uB)
. (B.4)

We next shift the origin in the phase plane to the stationary point (B.4) and make a linear
change of variables:

[
x

y

]
= T

[
ρA − vA

ρB − vB

]
, T = 1

uA uB − 1

[
uB

(
1 + u2

A

)
uA (uA uB − 1)

0 uA (uA + uB)

]
. (B.5)

In these new variables the equations become

ẋ = −y − bx2 − cxy + by2,

ẏ = x + xy,
(B.6)
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Fig. 4 Restriction on the
existence of solutions of type
n = 2 in the rα �= vα case for
vA = 1/2, vB = 1/3, vC = 1/6,
using (C.1). For values of
(rA, rB) outside the bounded
region, only type 1 solutions are
possible. For n > 2, the bounded
region in which type n solutions
are possible would be smaller

where

b = uA uB − 1

1 + u2
A

, c = 2uA + uB − u2
A uB

1 + u2
A

. (B.7)

This is the canonical form for the generalized Lotka-Volterra family of centers presented in
equation (1) of [14].

Given parameters b and c with b > 0 (B.7) can be solved to find

uA = −c +√c2 + 4b(b + 1)

2b
, uB = 4b(b + 1)

−c +√c2 + 4b(b + 1)
− c. (B.8)

Clearly uA > 0 and one finds easily that uA uB > 1, so uB > 0. Thus the set of systems (B.1)
with uA, uB , uC > 0 corresponds exactly with the family of all generalized Lotka-Volterra
systems (B.6) with b > 0.

Appendix C: Restriction on the Type of Solutions for rα �= vα , with vα in Region I

A naive estimate of the cutoff nmax, as described in Sect. 3, may be made in the following
way. Let us begin with a set of type 1 profiles, with average densities r̃α . These profiles
will be a portion of the type 1 solution for the rα = vα case, stretched such that less than
one full period of the ρα(x) fits inside the interval in x ∈ [0,1]. We will define the length
of the profiles l, 0 < l < 1, to be the fraction of one full period of the ρα(x) inside the
interval. From these type 1 profiles we may make a set of type n profiles that satisfy the
same boundary conditions as the original by rescaling x for the ρα(x), such that the original
type 1 profiles plus n − 1 full periods now appear in the interval. Then the average value of
the densities for the new type n profiles, rn,α , will be given by

rn,α = r̃α l + nvα

l + n
. (C.1)
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As a type n solution of the ELE for rα �= vα will be a profile of this form, if the l and r̃α

in (C.1) cannot be chosen such that the rn,α are equal to the specified rα , then this implies
that a type n solution does not exist for that case. In Fig. 4 we show an example of the
restriction imposed by this simple estimate.
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