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I. METHODS

A. Cluster construction rules

In the original formulation of the cluster expansion algorithm, clusters of size k+ 1 were constructed when pairs of
clusters of size k overlap by all but one site. Thus, in order to form the next set of clusters, O(N2

c ) operations are
necessary, where Nc is the number of selected clusters of size k. For large systems and small values of the threshold,
such pairwise comparisons can be computationally expensive.

To address this issue we developed a set of alternative cluster construction rules that can be executed quickly, even
when the number of selected clusters is large. Rather than comparing pairs of clusters, we identify sets of sites that
can be appended to existing clusters of size k to create larger clusters using a series of cutoffs, which we discuss below.
We begin by counting the number of times ni that each individual site i appears within the set of selected clusters.
The number of times nij that each pair of sites i, j appear in one of the selected clusters is also recorded. The set
of sites to be potentially added to the existing clusters is then chosen as sadd = {i|ni ≥ ncut

1 }. Once the set sadd is
generated, we iterate through the list of selected clusters and create new candidate clusters of size k+ 1 by appending
sites from sadd. We then consider pairs of sites i, j in the new cluster and check that nij ≥ ncut

2 for each pair. If this
check passes, then we add the new cluster Γ to the list of potential new clusters, counting the number of times nΓ that
this cluster is formed as we iterate through the list of selected clusters. Finally, all candidate clusters with nΓ ≥ ncut

c

are accepted. The computational complexity of this algorithm is O(Nc × k2), substantially faster than O(N2
c ) when

the number of clusters is larger than the typical maximum cluster size (practically, Nc & 10).
The rules described above depend on three cutoff values: ncut

1 , ncut
2 , and ncut

c . We choose these cutoff values
according to one of two conventions:

1. Lax: ncut
1 = 1, ncut

2 = 0, ncut
c = 2. This is consistent with the rule that a new cluster is constructed if any

pairs of selected clusters overlap by all but one site. Each site in the new cluster must thus appear in the list
of selected clusters at least once, and the new candidate cluster must be formed at least two times (once from
each one of the overlapping selected clusters), but each pair of sites need not be observed in the list of selected
clusters.

2. Strict: ncut
1 = k, ncut

2 = k − 1, ncut
c = k. This rule is consistent with the requirement that all possible size k

subclusters of a new size k+ 1 cluster to be added must be in the list of selected clusters. Here, each site in the
new cluster must appear at least k times, and each pair at least k − 1 times. The new candidate cluster must
then be formed by each possible subcluster while iterating through the list.

We use the strict cluster construction rule by default because this focuses the cluster expansion toward sets of sites
where significant interactions are clearly observed. Although the strict cluster construction rule can cause some
significant clusters to be missed (at least until the value of the threshold is lowered), it results in the generation of
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much fewer clusters overall. The fraction of generated clusters that are selected is also much higher for the strict
construction rule, leading to a more efficient expansion.

Gauge choice and evaluation of coupling values

As described in the main text, the Potts model is invariant under so-called gauge transformations, where

Jij(a, b)→ Jij(a, b) +Kij(a) ,

hi(a)→ hi(a)−
∑
j 6=i

Kij(a) , (1)

for any K. In addition, all the fields hi(a) at a site i can be uniformly shifted by a constant with no overall effect
on the probability. Thus, the number of independent fields at each site i is (qi − 1) instead of qi, and the number of
independent couplings for each pair of sites is (qi − 1)(qj − 1).

The gauge transformations in Eq. (1) can be exploited to choose a particular state of each variable (e.g. a particular
amino acid at each site in a protein sequence) and set the field and all couplings corresponding to this state to zero.
We refer to this as the gauge state for that variable. For protein sequences, common choices for the gauge state are
the most common (consensus) amino acid at each site, gaps, or (in this work) the grouped state.

Note that, as has been noted previously [1], inferred couplings and fields are not invariant under the choice of the
gauge due to the L2-norm regularization, so it is important to fix a particular gauge to compare them. As far as
the artificial models are concerned, we typically extract the parameters for a q-state Potts model, then to compare
the inferred parameters to the true ones we need to have them in the same gauge. We refer to the latter as the
comparison gauge. It can be different both from the original one and from the one chosen for the inference (in the
following called the inference gauge). To do so we perform the following transformations, where the gauge states
chosen for the comparison at site i are denoted by ci:

J ′ij(a, b) = Jij(a, b)− Jij(ci, b)− Jij(a, cj) + Jij(ci, cj) ,

h′i(a) = hi(a)− hi(ci) +
∑
j 6=i

[Jij(a, cj)− Jij(ci, cj)] . (2)

For contact map predictions, given a certain matrix Jij we compress the extra information about interactions
between different states using the Frobenius norm of the matrix. However before the Frobenius norm is computed,
we have to put couplings in a different gauge in which the sum of the elements in each column and row is zero. It can
be easily proved that this choice is the one minimizing the resulting Frobenius norm.

B. Entropy, couplings, fields, and gauge invariances for 2-variable clusters

Let’s consider a system of 2 variables (l = i, j) with ql states for each of them. The qi+ qj frequencies pl(a) and the
qi×qj correlations pij(a, b) have been sampled. The following conservations of the probabilities hold:

∑ql
a=1 pl(a) = 1,∑qi

a=1 pij(a, b) = pj(b), and
∑qi
a=1

∑qj
b=1 pij(a, b) = 1. The probability of a configuration (a, b) for the two variables

is expressed in the Potts model as:

pij(a, b) = ehi(a)+hj(b)+Jij(a,b) (3)

with the partition function

Z =
∑
a,b

ehi(a)+hj(b)+Jij(a,b) ≡
∑
a,b

pij(a, b) = 1 (4)

The conditional probability of having b in position j given a in position i is in the Potts model p(j, b|i, a) =
ehj(b)+Jij(a,b); by rewriting pij(a, b) = pi(a)p(j, b|i, a) = pi(a)ehj(b)+Jij(a,b) and comparing with Eq. (3) we obtain

pi(a) = ehi(a) or:

hi(a) = log pi(a) . (5)

An analogous expression is obtained for hj(b). Substituting Eq. (5) for hi(a) and hj(b) in Eq. (3) we obtain

Jij(a, b) = log

(
pij(a, b)

pi(a) pj(b)

)
(6)
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It is easy to verify that the conservation equations for probabilities are satisfied by the aboves choice for the parameters
hi(a), hj(b) and Jij(a, b).

Note that the above equations for the couplings and fields are also obtained by deriving the minimal cross-entropy
(see Eq. (4) in the main text) for a system of 2 variables with respect to the fields and couplings, which can be
rewritten as

S(i, j) =
∑
a,b

pij(a, b) log

(
pij(a, b)

pi(a)pj(b)

)
+
∑
a

pi(a) log pi(a) +
∑
b

pj(b) log pj(b) . (7)

Following Eq. (6) in the main text the 2-variable cluster contributions to the entropy are

∆S(i, j) =
∑
a,b

pij(a, b) log

(
pij(a, b)

pi(a)pj(b)

)
. (8)

The 2-variable cluster contributions to the couplings are ∆Jij(a, b) = Jij(a, b), defined in Eq. (6), and to the fields
∆hi(a) = −

∑
b Jij(a, b)pj(b).

Due to the conservation laws we can fix a gauge for the fields and couplings (see Eq. (2)), e.g. by imposing that
for each site i the field and the couplings for a chosen state ci are equal to zero. In this way we have less parameters
to infer in the model. The frequencies for this “gauge” state do not have to be recorded but can be derived from the
other frequencies: pi(c) = 1 −

∑
a6=c pi(a), and pij(a, c) = pi(a) −

∑
a′ 6=c pij(a, a

′). The gauge transformations such

that h′i(c) = 0, J ′ij(c, b) = 0 for the couplings and fields for 2-variable clusters are:

h′i(a) = log pi(a)− log pi(ci) +

N∑
j=1

(Jij(a, cj)− Jij(ci, cj)) ,

J ′ij(a, b) = log pij(a, b)− log pij(ci, b)− log pij(a, cj) + log pij(ci, cj) .

(9)

C. Additional regularization schemes

1. Sparse coupling constraint

While the cluster expansion described above alleviates computational problems related to large system sizes, Potts
models with large numbers of states (e.g. models of protein sequences, where 20 amino acids + 1 gap state may be
allowed at each site) remain computationally difficult. The number of terms in the partition function is

∏
i qi, thus

even for a small cluster of sites a large number of terms may need to be summed if qi � 1. To analyze such models, we
employed L0-regularization to enforce sparsity on the couplings combined with an efficient expansion of the partition
function to exploit sparse coupling structure.

To understand how a sparse coupling structure can decrease computational costs, we first observe that, given the
form of the energy (Eq. (1) of the main text), the partition function can be written in a particularly simple form in
the case that all couplings are equal to zero:

Z =

N∏
i=1

(
qi∑
a=1

ehi(a)

)
. (10)

Because the fields hi(a) at each site make independent contributions to the energy, the sum over all configurations can

be expressed as a product of terms from each site. Eq. (10) thus requires only
∑N
i=1 qi operations to compute, rather

than
∏N
i=1 qi. In the general case, where all couplings are not equal to zero, we can partially factorize the partition

function into a sum of independent and interacting factors. Let νi represent the set of states a at site i which have
Jij(a, b) = 0 for all j, b, and let µi denote the set of states that do not belong to νi (i.e. Jij(a, b) 6= 0 for some j, b).
We can then write a tree-like expansion the partition function as

Z =

(
N∏
i=1

Zi

)[
1 +

N∑
i=1

∑
a∈µi

ehi(a)

Zi

[
1 +

N∑
j=i+1

∑
b∈µj

ehj(b)+Jij(a,b)

Zj
×

[
1 +

N∑
k=j+1

∑
c∈µk

ehk(c)+Jik(a,c)+Jjk(b,c)

Zk
[1 + . . .]

]]]
.

(11)
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where Zi =
∑
a∈νi exp (hi(a)). Eq. (11) can be efficiently computed when interactions are sparse, and in the simple

case that µi = ∅ for all i, it reduces simply to Eq. (10).
To enforce sparsity, we applied L0-regularization for the couplings,

∆` = −γ0

N−1∑
i=1

N∑
j=i+1

qi∑
a=1

qj∑
b=1

‖Jij(a, b)‖0 . (12)

With this choice of regularization, couplings that do not increase the likelihood of the model (or equivalently, decrease
the cross-entropy between the model and the data) by at least γ0 are set to zero. This form of the regularization was
implemented following the adaptive forward-backward algorithm presented in [2].

2. Gauge invariant regularization of the couplings

One can clearly show that the magnitude of the standard L2-norm regularization term (Eq. (5) in the main text)
is not gauge-invariant. That is, transformations of the form of Eq. (1) change the value of the regularization penalty.
Thus, slightly different models can be inferred from the same data, and using the same regularization strength, if the
gauge is fixed in different ways.

This dependence on the gauge choice can be avoided through the use of a gauge invariant regularization for couplings.
Instead of an L2-norm penalty on Jij(a, b), we instead introduce the penalty on a transformed coupling value

Kij(a, b) = Jij(a, b)−
1

qj

qj∑
c=1

Jij(a, c)−
1

qi

qi∑
c=1

Jij(c, b) +
1

qiqj

qi∑
c=1

qj∑
d=1

Jij(c, d) . (13)

One can then verify that Kij(a, b) is invariant under gauge transformations, and thus an L2-norm regularization of
the form

γ

N−1∑
i=1

N∑
j=i+1

qi∑
a=1

qj∑
b=1

Kij(a, b)
2 (14)

does not depend on the choice of gauge.

D. Finite sampling error estimation

1. Error on the frequencies and correlations

The typical uncertainties of the 1- and 2-point frequencies can be determined simply from the covariance matrix,

δpi =

√
1

B
χi,i =

√
〈xi〉J(1− 〈xi〉J)

B

δpij =

√
1

B
χij,ij =

√
〈xixj〉J(1− 〈xixj〉J)

B
.

(15)

2. Error on the inferred parameters

The Hessian of the cross-entropy, χ, is the Fisher information matrix and it can be used to estimate the statistical
fluctuations of the inferred parameters due to finite sampling. In the limit of large B, by the central limit theorem we
know that the log-likelihood obeys a normal law centred on the minimum of SPotts(J|p). Thus, given its covariance
matrix 1

Bχ
−1, we can define the errors on couplings and fields as follows:

δhi(a) =

√
1

B
(χ−1)ia,ia ,

δJij(a, b) =

√
1

B
(χ−1)iajb,iajb .

(16)
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To ensure that χ is positive definite we need to include a regularization term, as in Eq. (3) of the main text, before
inverting the Hessian. Moreover, the inversion of χ is computationally infeasible for long sequences and for large q

given that it has size
(
qN + q2(N(N−1)

2 )
)
×
(
qN + q2(N(N−1)

2 )
)

, thus some approximate value for errors is needed in

most biologically interesting cases (protein sequences typically have N ∼ 100 and q & 10). Below we derive a simple
approximation for the error from the couplings and fields obtained only from pairs of variables.

3. Two-variable approximation of the error the inferred parameters

In the case that we consider just two variables alone, we have a simple approximation for the couplings and fields.
We first regularize

pi(a)→ pi(a) +
1

B
,

pij(a, b)→ pij(a, b) +
1

B
.

We then obtain an approximate formula for the fields and couplings:

hi(a) = log pi(a)− log pi(ci) +
N∑
j=1

[
log

(
pij(a, cj)

pi(a)pj(cj)

)
− log

(
pij(ci, cj)

pi(ci)pj(cj)

)]
,

Jij(a, b) = log pij(a, b)− log pij(ci, b)− log pij(a, cj) + log pij(ci, cj) .

(17)

The corresponding variances for the fields and couplings due to finite sampling are given by

σhi(a) = (N − 2)
1− pi(a)

B pi(a)
+ (N − 2)

1− pi(ci)
B pi(ci)

∑
j 6=i

(
1− pij(a, cj)
B pij(a, cj)

+
1− pij(ci, cj)
B pij(ci, cj)

)
, (18)

and standard deviations dhi(a) =
√
σhi(a); and

σJij(a,b) =
1− pij(a, b)
B pij(a, b)

+
1− pij(ci, b)
B pij(ci, b)

+
1− pij(a, cj)
B pij(a, cj)

+
1− pij(ci, cj)
B pij(ci, cj)

. (19)

and standard deviations dJij(a, b) =
√
σJij(ab).

E. Gaussian Inference

A faster approximate method to infer couplings and fields is using the Gaussian model. In this case the couplings
are obtained as

Jij(a, b) = c−1
ij (ab) . (20)

The above expression for the couplings is the same as the one obtained in the mean-field approximation. The fields
are obtained as

hi(a) = −
∑
i 6=j,b

Jij(a, b) pj(b)−
∑
b 6=a

Ji,i(a, b) pi(b) +
1

2
Ji,i(a, a) (1− 2 pi(a)) . (21)

These are different and generally give a better generative model than the one obtained through the mean-field
approximation. Typically the frequencies and pairwise frequencies are pretreated with a large pseudo-count α = 0.5:

pi(a) → 1− α
q

pi(a) +
α

q
, (22)

pij(a, b) →
1− α
q2

pij(a, b) +
α

q2
. (23)
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FIG. 1: ER model parameters. (Left, middle) Gaussian distributions from which parameters of the artificial model are
chosen. For fields µ = 0 and σ2 = 5 while for couplings µ = 0 and σ2 = 1. (Right) “Contact map” for the ER05 model, where
black squares represent interacting sites with non-zero couplings. If i and j interact then Jij is a 21×21 matrix whose elements
are chosen according to the above distributions. The maximum number of interacting sites for any site is 7. In total there are
61 interacting pairs of sites.
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FIG. 2: ER05 model inferred by ACE with p0 = 0.05. Here we show the “contact map” obtained with the couplings
inferred by ACE. The top-left triangle shows the top 61 predicted contact (i.e. interacting) pairs, all of which are correct. In
the bottom-right triangle the full Frobenius norm with APC is displayed.

II. APPLICATIONS

A. Artificial data on Erdos-Renyi models

The network of interactions for the ER05 model studied here is shown in the contact map of Fig. 1. Coupling values
for pairs of interacting sites are drawn according to a Gaussian distribution, shown in Fig. 1. Figure 2 shows that all
contacts are correctly predicted from the 61 pairs of sites with the largest Frobenius norm of the inferred couplings,
after the average product correction (APC).

Lattice-protein structure

In Fig. 3 we show the lattice protein fold of SB to which the multi-sequence alignment is associated.
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FIG. 3: Structure of the lattice protein SB . The MSA analyzed is composed of sequences with a large probability to fold
on the above lattice protein structure.

FIG. 4: Pseudo-likelihood inference for the ER05 model. Here we show scatter plots of the field and coupling parameters
inferred by plmDCA compared against the true ones. The two values of the regularization we have used are γ = 0.0001 (top)
and γ = 0.01 (bottom). Green points show the subset of parameters that correspond to explicitly modeled Potts states when
using the compression po = 0.05.

Comparison with plmDCA for all data sets

The fields and couplings reconstructed for the ER005 data set with plmDCA using two values of the regularization
γ = 0.01 and γ = 0.0001 are shown in Fig. 4. Note that for DCA and plmDCA we do not compress the number
of states, thus more points are shown. The reconstruction of coupling parameters restricted to the ones selected in
the ACE inference, after the Potts state compression with p0 = 0.05, is quite accurate at the smallest regularization
strength, but fields are less precisely inferred compared to ACE for both regularization strengths. Moreover, Fig. 4
and 5 show that Potts states that are not well sampled give less well inferred parameters. The presence of these poorly
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FIG. 5: Pseudo-likelihood inference for the ER05 model. Scatter plots of field and coupling parameters inferred by
the plmDCA algorithm (with γ = 0.0001) shown against the true ones, restricted to the pair of interacting sites (2, 4), and
with statistical error bars for the inferred couplings. Green points show the subset of parameters that correspond to explicitly
modeled Potts states when using the compression po = 0.05, which have smaller error bars.

FIG. 6: Pseudo-likelihood inference for the ER05 model. Reconstruction of the statistics of the configurations by Monte
Carlo sampling from the model inferred by plmDCA. Two values of the regularization are compared: γ = 0.01 and γ = 10−4.
The relative errors are εp = 9 (γ = 0.01), 18 (γ = 10−4) and εmax = 40 (γ = 0.01), 233 (γ = 10−4).

inferred parameters can also have an impact on the less accurate inference of fields and generative properties of the
inferred model shown in Fig. 6. Reconstructions of statistics from the parameters inferred with plmDCA is shown for
LP SB (Fig. 7), the trypsin inhibitor PF00014 (Fig. 8), HIV p7 (Fig. 9), and the neural data (Fig. 10).

B. Gaussian (DCA) inference and generative tests for the ER05 model

The reconstruction of the frequencies, pairwise correlations, and distribution of the number of mutations with
respect to the consensus sequence with the Gaussian model (DCA) for the ER05 data set is shown in Fig. 11. The
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FIG. 7: Pseudo-likelihood inference for the lattice protein SB . Reconstruction of the statistics of the configurations
by Monte Carlo sampling from the model inferred by plmDCA. Two values of the regularization are compared: γ = 0.01 and
γ = 10−4. The relative errors are εp = 5 (γ = 0.01), 2.4 (γ = 10−4) and εmax = 5 (γ = 0.01), 6 (γ = 10−4).

FIG. 8: Pseudo-likelihood inference for the trypsin inhibitor PF00014. Reconstruction of the statistics of the con-
figurations by Monte Carlo sampling from the model inferred by plmDCA. Two values of the regularization are compared:
γ = 0.01 and γ = 10−3. The relative errors are εp = 4 (γ = 0.01), 5 (γ = 10−3) and εmax = 10 (γ = 0.01), 21 (γ = 10−3).

frequencies and pairwise correlation are not well reproduced and the distribution of configurations is strongly peaked
around the consensus configuration.
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FIG. 9: Pseudo-likelihood inference for the HIV protein p7. Reconstruction of the statistics of the configurations by
Monte Carlo sampling from the model inferred by plmDCA. Two values of the regularization are compared: γ = 0.01 and
γ = 10−3. The relative errors are εp = 2 (γ = 0.01), 7 (γ = 10−3) and εmax = 8 (γ = 0.01), 90 (γ = 10−3).

FIG. 10: Pseudo-likelihood inference for the cortical data. Reconstruction of the statistics of the configurations by
Monte Carlo sampling from the model inferred by plmDCA. Two values of the regularization are compared: γ = 0.01 and
γ = 10−5. The relative errors are εp = 588(γ = 0.01), 1700 (γ = 10−5) and εmax = 2300 (γ = 0.01), 18000 (γ = 10−5).

C. Generative tests for ACE at very large regularization strength: application to PF00014

As underlined in the main text, the model inferred with ACE at very large regularization strength, γ = 1, gives very
good contact predictions but it is not generative. The frequencies (Fig. 12) and high order non-connected correlations
are quite well reproduced, but the connected correlations (Fig. 12) are very weak because the coupling parameters
are largely overdamped.
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FIG. 11: Gaussian (DCA) inference for the ER05 model. Reconstruction of the statistics by Monte Carlo sampling from
the model inferred using the Gaussian approximation.

FIG. 12: ACE inference with strong regularization (γ = 1) for PF00014. Reconstruction of the statistics by Monte
Carlo sampling from the model inferred by ACE with γ = 1.

D. Using ACE with knowledge of the contact map: application to PF00014

Here we start the inference procedure in ACE using a list of the set of two-site clusters corresponding to real
contact pairs for PF00014. As shown in Fig. 13, clusters corresponding to the sites in contact are summed in the
cluster entropy, even at threshold t = 1. When lowering the threshold the entropy reaches the curve obtained with
the normal procedure as soon as the same clusters are summed. Fig. 14 shows the reconstruction of the statistics of
the data from the parameters inferred at the small reduction po = 0.005 and for a large threshold t = 0.04, at which
εmax = 3.
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FIG. 13: ACE inference for PF00014 starting from the list of contact pairs. Maximal error and entropy S in the
standard cluster expansion (black) are compared to those obtained when starting with knowledge of the contact map (red).

FIG. 14: ACE inference with for PF00014 starting from the list of contact pairs with po = 0.005. Reconstruction
of statistics of the configurations from parameters inferred by ACE starting with knowledge of the contact map at a very large
threshold t = 0.04.
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